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Introduction

During the sixties, Professor Lotfi Zadeh, of the University of California at
Berkeley [1], put forward the proposition that vagueness is an aspect of uncer-
tainty that is different from randomness. He proposed a mathematical way of
looking at the intrinsic vagueness of the natural human language; he called his
approach “fuzzy logic” [2—6]. The objective of fuzzy logic has been to make com-
puters “think” like humans [7] and remove the barrier between us and the full uti-
lization of computer capabilities.

Computer and humans have complementary strengths and weaknesses. For
example, it is not a difficult task for us to identify people’s faces in a photograph
or understand a statement such as “long distance.” These are challenging tasks for
a computer; however, a computer has no difficulty in finding the average of a hun-
dred 6-digit numbers in milliseconds.

Computers do not “understand” vague human concepts; data has to be pre-
sented to a computer in simple binary logic. Most of human data, however, is not
binary. For example, we do not divide people into two well-defined groups such
as “good” and “bad.” In our thinking a person may still be good in spite of being
imperfect. Within the “good” group you may find, whatever criteria you use,
those who are really good and those who are bordering on being bad, and a whole
range in between. Extending this observation to other things such as temperature,
pressure, size, etc., one may conclude that all things admit degrees in their
description; these degrees are not random but rather deterministic, based on sev-
eral factors such as the nature of the situation, experience, etc. This idea is the

i
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essence of the so-called fuzzy sets as opposed to classical, or crisp, sets. In clas-
sical set theory, an object either belongs to a set or not; a person is either good or
bad; temperature is either hot or cold; a glass is either full or empty. Classical set
theory was the mathematical background for computer logic. In fuzzy set theory,
degrees of belonging to a set are introduced; a person can be, for example, 80%
in the “good” set and 40% in the “bad” set, based on our experience and judg-
ment. Fuzzy set theory is the mathematical background that is needed to capture
the way people think.

Controversy has surrounded the concept of fuzziness since its inception [7].
Some maintain that probability theory can handle any kind of uncertainty; others
think that fuzziness is probability in disguise, or that probability is the only sensi-
ble way to describe any kind of uncertainty. Some found that the term “fuzzy”
suits the innumerates only; others voiced even stronger opinions. A very readable
review of fuzziness critique was given by Laviolette and Seaman [8] from a sta-
tistician’s point of view. Lindley [9] voiced a challenge that “anything that can be
done by alternatives to probability can be done better by probability.” Although
fuzzy logic is not an alternative to probability, Lindley assumed it is; his challenge
is directed toward fuzzy logic. The fact remains, however, that fuzzy logic has led
to applications that probability, although it has been with us for a long time, did
not address. Fuzzy logic cannot simply be discounted or discredited because it is
not perfect or because probability can probably do what fuzzy logic has done.

Supporters of fuzziness, “fuzzy-ists,” put forward arguments to show the use-
fulness of concept and to explain the distinction between fuzziness and random-
ness. Klir [10], for example, addressed rigorously the question of whether or not
probability theory is the only sensible description of uncertainty. The conclusion
was that probability theory is capable of conceptualizing only one type of uncer-
tainty and hence concepts of fuzziness are required. Some supporters of fuzziness
went as far as adding an aura of mystique to fuzzy set theory [11].

Whether fuzziness can be replaced by probability or not, whether it is the start
of a new philosophy or not, it has contributed to engineering and it is here to stay.

In simple terms [12] one can say that the uncertainty of probability, as com-
monly used in engineering, relates to the randomness of the occurence of a phe-
nomenon. For example, “role a die and get two.” The ambiguity or vagueness of a
word or concept does not relate to randomness but to fuzziness. The uncertainty in
an expression like “comfortable temperature” or “small number” may be termed
fuzziness.

Randomness and fuzziness are two different aspects of uncertainty. The pas-
sage of time or an increase of information can clarify the uncertainty of randomness.
After rolling a die, for example, the number you get is certain. The uncertainty asso-
ciated with fuzziness is an essential characteristic of words and concepts. Passage
of time does not make the statement “small number” become any clearer.
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It is interesting to observe that the uncertainly in a quantum-mechanical
sense does not belong to either of the previous two categories of uncertainty. It is
not due to vagueness intrinsic to the natural human language nor is there an exper-
iment or a test to remove it. Quantum physics uses the notion of uncertainty in a
fundamentally different way. Its most fundamental principle, Heisenberg’s uncer-
tainty principle, states that certain physical characteristics of a system cannot be
simultaneously known with an unlimited precision. For example, the better we can
measure the position of an electron the less precisely we know the value of its
velocity. Attempts to localize an electron lead to smearing or fuzzification in its
velocity.

By the seventies, fuzzy logic gained increasing importance after Ebrahim
Mamdani and Seto Assilian, at Queen Mary College in London, demonstrated the
practical potential of fuzzy logic [13]. Their pioneering work has led to an expo-
nential growth of fuzzy logic literature and opened the door for various applica-
tions such as industrial process control and consumer products. Fuzzy logic uses
linguistic modeling of a system, as opposed to mathematical modeling, in deter-
mining the control rules, using the experience of a human operator. A difficulty
occurred in formally determining the stability of a fuzzy control system. Kiszka et
al. [14] pioneered energistic stability studies of fuzzy dynamic systems.

Further advances were made when Togai and Watanabe [15] reported their
first fuzzy chip. Yamazaki and Sugeno [16] and Yamakawa [17, 18] developed a
microprocessor-based fuzzy controller.

Another era started by combining neural networks capabilities with those of
fuzzy logic. Kosko [19] presented a new approach for adaptive fuzzy systems
using neural networks.

By 1990, fuzzy logic reached the consumer market [20-22]. Fuzzy logic was
used in vacuum cleaners, cameras, microwave ovens, and several other consumer
products.

The fuzzy logic tide has reached the Internet. You can use the Internet to
search for the most up-to-date information about fuzzy products or join a discus-
sion group on the topic. A good start could be through obtaining the monthly
updated information FAQ (frequently asked questions) by sending an e-mail to:

ai + query @cs.cmu.edu
with the message
send fuzzy FAQ

You will receive information about the comp.ai.fuzzy news group (started in

1993), fuzzy BBS, FTP repositories, companies supplying fuzzy tools, etc.
Fuzzy logic has been in vogue for some time now. Some people think it has

the answer for everything not only in electronics and systems design but even far
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beyond that [11]. Thus, combined with neural networks, one may reach the erro-
neous conclusion that we have reached the ultimate in electronics. Fuzzy logic has
proved to be a powerful tool, but remember that the field of electronics is always
evolving; fuzzy logic marked the start of an era, but we should not think that it is
the zenith of electronics. Remember these famous last words:

“The telegraph is the ultimate in fast communication.”—Engineer, 1850s

“With the vacuum tube, we've reached the zenith in communication potential.”
—Engineer, 1920s

“Transistors are the final step in search for speedy reliable means of communica-
tions.”—Engineer, 1950s

“Integrated circuits are IT! They can’t possibly go beyond this revolutionary new
concept.”—Engineer, 1960s

It is always important to understand the fundamental concepts, old and new,
and be equipped with sufficient background to get the maximum out of electron-
ics, this dynamic field, and prepare for further advances.

This is what this book hopes to achieve: to give the fundamental concepts of
fuzzy logic and its applications and provide a platform so that the reader is pre-
pared to use fuzzy logic and to advance further in this area.

To start, a mathematical foundation linking classical sets and Boolean logic
is presented in chapter two. This relation is not usually emphasized in digital elec-
tronics courses. The way becomes paved for introducing the concepts of fuzzy sets
and logic, which are introduced in chapters three and four. In chapter five, fuzzy
control systems are introduced and contrasted with PID systems. Design proce-
dures are explained in an easy format. Electronic neural networks are reviewed in
chapter six to provide the reader with a platform to pursue further advances in
fuzzy logic, a quick view of which is given in chapter seven.

After reading this book, I expect that you will be able to

= Use fuzzy sets and fuzzy algebra.

= Use the building blocks of fuzzy circuits.

= Design fuzzy control systems.

= Design simple neural networks.

= Pursue advances in fuzzy-neural systems.

Sail through fuzzy logic literature, including the Internet resources, with ease.

Chapter 1 Questions

1-1. What was the original objective of developing fuzzy logic? Has that objective been
achieved?

1-2. What is a crisp set?

1-3. What is binary logic?
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1-4. Discuss the merits and demerits of using the tag “fuzzy logic” to describe Zadeh’s

1-5

new approach.
Distinguish qualitatively between fuzziness and probability as commonly used in
engineering.

1-6. Name a few consumer products in which fuzzy electronics were used.
1-7. What is Heisenberg’s uncertainty principle?
1-8. Obtain, using the Internet, a list of companies supplying fuzzy tools.
1-9. Are fuzzy-neural networks the ultimate in electronics?
*1-10. Max Black envisioned some concepts about vagueness in his paper: “Vagueness—

An Exercise in Logical Anlysis, Philosophy of Science (1937): 427-455.

a) Summarize an example he gave to illustrate the vagueness intrinsic to language.

b) Explain his distinction between vagueness and ambiguity, and between vague-
ness and generalization.

¢) Give his answer to the question, “Is vagueness subjective?”

d) Sketch the consistency profiles presented to describe a typical vague symbol, a
very precise symbol, and a very vague symbol. Comment on these graphs.

e) What was the objective of his “experiment in vagueness”?
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Sets, Boolean Logic
and Algebra

Definition of a Set

A set is a collection of objects. The individual objects are referred to as elements
or members of the set. The expression “is an element of” is written as €, while
“is not an element of” is written as &.

EXAMPLE:

2.2

x € A: x 1s an element of set A.
x & A: x is not an element of set A.

Usually sets are denoted by capital letters and elements by lower-case letters.

Description of a Set

There are several possible ways to describe or define a particular set:

1. A set may be defined by specifying the properties of its members. For
example, one may specify set A as the collection of all positive integers
that are less than or equal to 10. This may be written as

A = {x | x is a positive integer = 10}.
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2. A set may be described by listing all of its members. For example, one
may say set A is the collection of the following numbers: 0, 1, 2, 3, 4, 5,
6, 7, 8,9, 10. This is written as

A=1{0,1,2,3,4,5,6,7,8,9, 10}
3. A formula may be used to describe a set. For example,
A= {x; oy =xptdd =04, Sewhere %= 1),

This formula states that A is a set that is composed of five elements. The
first element is equal to 1, and each subsequent element is obtained by
adding 1 to the previous element.

4. A set can be defined using an operation on some set; such as intersection
(logical AND) or union (logical OR), see section 2.3. For example,

A = {x| xis an element that belongs to B AND C},

where B, C are sets

5. A set may be defined using the so-called membership function. The mem-
bership function assumes a value of 1 for elements that are members of
the set, and assumes a value of 0 for elements that are not members of the
set. In shorthand form,

wx)y=1 ifxeA
for all x values considered.
Hx)=0 ifxe&EA
For example, let the numbers under consideration (the universe as far as
this example is concerned) be 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10. The set of
even numbers may be written as
{(1,0),(2,1),(3,0), (4, 1),(5,0), (6, 1), (7,0), (8, 1), (9,0, (10, 1)}

where each element in the universe is written associated with its mem-
bership function, 0 for non-members, and 1 for members. The set can
simply be written as {2, 4, 6, 8, 10} where elements with u,(x) = 0 are
not included and the elements listed are understood to have

Hix) =1,

The number of elements of a set is called the cardinality of the set and is
denoted by #A or |A|.

EXAMPLE: Let A = {2,4, 6, 8, 10}; then #A = 5.

#A is either a natural number (for sets with elements that can be enumerated in
the usual sense), or an infinity (for infinite sets). (Different infinities in turn, may have
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different cardinalities. For instance, there are infinitely many more real numbers than
integer numbers. These matters, however, will not be discussed in this book).

The power set of A is the set whose elements are the subsets of A; it is
denoted by PA.

EXAMPLE: LetA = {1, 2, 3}, then
Pa=A@ {1}, (2}, (30, 2 35 13 (1,2, (1,2, 3})
where @ is an empty set (see section 2.3).
EXAMPLE: Let A = {x}, then PA = {D, {x}}.

2.3

Operations on Sets

Before we discuss some of the basic operations on sets, let us consider first some
concepts associated with sets, namely, the empty set, subsets, and the universal set.

Suppose you have a telephone index—it has pages marked with letters from *
A to Z. You organize the names so that the first letter of a name corresponds with
the letter designation of the page. A listing under a given letter may be subdivid-
ed according to the area code, for example. You may not know anyone with names
starting with, say, K, X, Y, etc.; these pages will be empty. Now, the collection of
names under the same letter is an example of a set; subdivision of pages gives sub-
sets. Pages with no names listed are examples of empty sets. The whole collection
of names in the index are all the names you may consider phoning; it is the uni-
versal set, or the universe, as far as this example is concerned. Thus the empty set
is a set that has no elements (it is usually denoted by the symbol ®) and has a car-
dinality of zero. The universal set is a set that contains all sets under consideration
(it usually is denoted by the symbols I or U. Set B is a subset of A if each element
x in B is also an element in A; this is written as B C A.

It is interesting to note that all empty sets are equal. This reminds me of the
fellow who asked the waiter for coffee without milk, and the waiter said, “Sorry,
we ran out of milk; do you mind a coffee without cream?”

2.3.1 The Intersection of Sets

Taking the intersection of some sets A, B, C, . . . results in a new set containing
only those elements that occur in each of the sets A, B, C, . . . The intersection of
sets A and B is denotd by AB or A N B. In shorthand (mathematical language),
ANB={xEANB|xEAandxE BJ.
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EXAMPLE: LetA={1,2,3,4,5} and B = {2, 4, 6,8}: then AN B = {2,4}.
EXAMPLE: LetA = {1} and B = {0}; then A N B = ®.
Intersection operation has some properties that are reminiscent of those of multi-
plication of numbers, with the universal set I playing the role of unity and the
empty set P playing the role of zero.
EXAMPLE: *AB=BA (commutative law)
* A(B C) = (AB)C (associative law)
*AP=PandAI=A
Then there are properties that are unique, i.e., dissimilar to multiplication, such as
IfBCA,thenBA =B,and A A = A.
EXAMPLE: LetA = {1,2,3,4,5,6} and B = {2, 3, 4}; then,
ANB= {2 3,4} and
AMA=1{122345,6}.
2.3.2 The Union of Sets
Taking the union of some sets A, B, C, . . .results in a new set containing the ele-
ments that occur in at least one of the sets A, B, C, . .. The union of sets A and B
is denoted by A + B or A U B. In shorthand (mathematical language), AU B =
{rEAUB|xEAorx €BJ.
EXAMPLE: LetA = {1,2,3,4,5} and B = {2, 4, 6, 8}; thenA UB = {1,2,3,4,5,6,8}.
EXAMPLE: LetA = {1},B={0}andI= {0, 1};thenA UB = L.
Union operation has some properties that are reminiscent of those of addition of
numbers.
EXAMPLE: *A+B=B+AAB+C)=AB+AC,

(

*A+(B+C)=(A+B)+C,
*A+P=A,andA +]1=1
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Then there are unique properties, such as

IfBCA,thenB + A=A,and A + A = A, since no new elements are introduced
or excluded by these operations in this case.

Also, A + 1 =1, since I is the maximum the result of addition can reach, i.e.
to include all the elements that are available.

EXAMPLE: LetA = {1,2,3,4,5,6} and B = {2, 3, 4}; then
A+B=(1,22345,6)
and
A+A=1{1,273,45,6]}.
2.3.3 The Complement of a Set
Taking the absolute complement of a set A results in a new set containing all the
elements of the universal set excluding those of set A. The complement of A is
denoted by A. The union of A and A gives the universal set, while their inter-
section gives the empty set, since, by definition, they do not have any common
elements. The membership function of set A, u,(x), and that of A, uz(x), are
related by
Mz () =1 = py(x).
EXAMPLE: Letl ={1,2,3,4,5,6,7,8,9,10} and A = {1, 2, 3, 4}; then
A={5,6,7,8,9,10).
EXAMPLE: LetI = {0, 1} and A = {1}; then

A={0}).

One can define a complement of set A relative to another set B, rather than I. This
is denoted by Aj.

The so-called Venn diagrams are often used to illustrate various operations
on sets. Some examples are shown in Table 2.1. For a smooth transition to fuzzy
set theory, one may use an alternative format as shown in Figure 2.1. The elements
x in a set are listed along the horizontal axis in some order and the membership
function u(x) evaluated at each element is listed along the vertical axis. For the
classical (or crisp) sets, p(x) = 1 or 0 as stated before.
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Operation Symbol Venn diagram

B is a subset of A BCA
A I

Absolute complement A

of A

Relative complement A-B

of B with respect to

A(BCA)

Union of A and B AUB

Intersection of A and B ANB

Substraction of A-B=A-AB

B from A (B ZA) .”%
J |

Symmetric difference AAB

of Aand B
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(%) (%) #()
1.0 L] it o o s o | (P} e
7 | %
i
|
Z I
0.0 0 X 0.0 7 X 0.0 B X
2#(x) #(x)
o / 1.07 “"E
|
I
|
|
/ i
0.0 2 X 0.0 B L X
(X w(x)
1.0 1.0 J" —————————— |
i |
| I
| I
: A B I
i |
| |
I I
0.0 Xy 020 ATIB X

Figure 2.1 An illustration of profile format Venn diagrams.

2.3.4 Summary of Algebra of Sets

1. fACBand B C A, then A = B.

2. FACBand B C C, then A.C C.

3 B EeA A

4. A+B=B+A,AB=BA.

5. A+ B+C)=(A+B)+C,ABC) =(AB)C.
6. A+A=A AA=A.

T.AB+F ) =AB +ACA+BC=(A+ BIA+ O
B A+P=AAD=0]

9 A+I=1LAI=A.

10 A+A=LAA=®

1. d=LI=¢

12 A=A,

A + B) = ABand (AB) = A + B (DeMorgan’s Laws).

—
Y
—_
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2.3.5 Cartesian Products of Sets

The name of Cartesian products mimics the familiar coordinate system since it
leads to the formation of ordered pairs. The Cartesian product of sets A and B is
defined as

AXB={(a,b)|a€EA,beEB}.

EXAMPLE:

LetA = {0, 1,2} and B = {3, 4}. Then

A X B ={(0,3),(0,4),(1,3), 0,4, (2,3), 2,4}
and
BXA={(3,0),(3,1),(3,2),4,0),(4,1),4,2)}.

EXAMPLE:

Show that A X (B U C) = (A X B) U (A X C).

Let A= da, asian)..c)s
B = {b,b,,b;,...},and
Ci= e 6504, . 1 ); then
EHS = A X B UC) = {(@, b kg, . b)), . @.c) -
(i), s okl G st}
RHS =(A X B) U {A X C) = {(a;, b)), (15 8y); « .oy (@5 By), oo 0y
@i e @) - ol C1)i - - -}
.. LHS = = RHS.

Selected ordered pairs from the set A X B form a subset R, referred to as a
binary relation from A to B. If A = B, R is said to be a binary relation in A.

EXAMPLE:

LetA = {0,1,2} and B = {3, 4}. Suppose we are only interested in those ordered
pairs whose second coordinate is a multiple of two; then we select from A X B
those pairs that satisty that condition:

R={(0,4),0,4),(2,4)} CA XB.




2.4

Relations / 15

Relations

2.4.1 Introduction

The concept of relations may be viewed as a generalization of that of functions
(some authors view them as two unrelated concepts). A function describes
mathematically how two (or more) items are related. For example, f(x) = x> +
1, describes the dependence of f (x) on x. The function f{x) may be evaluated
for given values of x. Not all related items, however, can be described by a
mathematical expression. For example, a set of names and a set of telephone
numbers, a set of items of clothing and a set of weather conditions, etc. A way
to approach this problem is to make use of the Cartesian product of two sets;
it produces ordered pairs, i.e., it relates items from the first set to items from
the second set. A new set is thus generated that contains all potential related
pairs. From that new set a subset can be chosen according to some specified
criteria.

2.4.2 Basic Definitions

A binary relation, R, from set A to set B is defined as a subset of A X B. If (g, b)
€ R one says that a is R-related to b and denotes this by a R b. The same thing can
be expressed differently by saying that there is a correspondence g from A to B;
this is denoted by g: A — B. A is called the domain and B is called the codomain.
A relation on A is any correspondence from A to A. There are four types of such
a relation R:

1. Reflexive, if a R a for every a € A.

2. Symmetric, if a R b implies b R a.

3. Anti-symmetric, if a R b and b R a implies a = b.
4. Transitive, if a R b and b R ¢ implies a R c.

EXAMPLE:

Let A be a set of weather conditions such that A = {snow, rain, sunshine}, and let
B be a set of items you may use such that B = {shoes, boots, coat, umbrella}. The
Cartesian product A X B produces all possible combinations of weather condi-
tions and items you may use.

A X B = {(snow, shoes), (snow, boots) (snow, coat), (snow, umbrella),
(rain, shoes), (rain, boots), (rain, coat), (rain, umbrella),
(sunshine, shoes), (sunshine, boots), (sunshine, coat), (sunshine,
umbrella)}
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A relation R from A to B can be defined by selecting ordered pairs from the
set A X B that satisfy a particular relationship. For example,

R = {(snow, boots) (snow, coat), (rain, boots), (rain, umbrella), (sunshine,
shoes)}

EXAMPLE:

Let A be a set of traffic light conditions, A = {Red, Yellow, Green}, and let B be
a set of actions a driver may take, B = {stop, low speed, high speed}. The opera-
tion A X B gives the set of all possible combinations from A to B. From that set
one chooses a subset that satisfies traffic law. Thus one may choose

R = {(Red, stop), (Yellow, low speed), (Green, high speed)}.

It is interesting to observe that in the previous two examples, a mathematical func-
tion was not required (it probably does not even exist) to define a relation. Only a
linguistic description is needed, e.g., if it is raining, use an umbrella, or if it is red,
then stop.

EXAMPLE:

LetA = {1,2,3}and B = {4, 5, 6}, and suppose a correspondence from A
to B is defined as “a is half of b” where a € A, b € B, and (a, b) € R.

The Cartesian product A X B is given by
AXB=1{1,23} X {4,5,6}
= {(1,4),(1,5), (1, 6), (2, 4), (2,5), (2, 6), 3,4, (3, 5), 3, 0)}.
From that set we select a subset R according to the criteria given; Thus
R=1{(2,4),3,6)}.

One can write 2R 4, and 3R 6, while 184, 1R 5, 1R6,2R5,2R6,3R4, 3K 5, where
R means not related to.

If the correspondence were defined differently, we would have obtained a
different set. For example, suppose we specified that a is an odd number and b is
an even number for all (g, b) € R. Then, we selected the pairs (a, b) from the set
A X B that satisfy the specification given. This leads to

R={(1,4),(1,6),(3,4), (3, 6)}

2.4.3 Pictorial Representation

A relation from A to B can be pictured using Cartesian axes, a table, or a listing
of the elements that shows the correspondence between elements by arrows.
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EXAMPLE: Let A = {snow, rain, sunshine} and let B = {shoes, boots, coat, umbrella}.
Suppose :
R = {(snow, boots), (snow, coat), (rain, boots), (rain, umbrella), (sunshine,
shoes)}.

Then R may be represented pictorially using one of the following:

(1) Using Cartesian axes

Umbrella

Coat

Boots - ° °

Shoes °

1 1 1
Snow Rain Sunshine

(2) Using an array

snow rain sunshine
umbrella 0 1 0
coat 1 0 0
boots 1 1 0
shoes 0 0 1

This can be written as a matrix:

[T e =
O = O
-0 O o



18 / Sets, Boolean Logic and Algebra

(3) Using an arrow diagram

Umbrella

There is another way of representing a relation when it is from a finite set into
itself, as illustrated in the following example.

EXAMPLE: Let A = {1, 2, 3,4, 5}, and suppose a relation on A is defined as
R={{,2), (2, 2),13,2),3,4, @, 1), 5, 1), 5,5)}.

This can be represented as shown in Figure 2.4.

2.4.4 Inverses

If a relation R takes us from a domain A to a codomain B, the inverse of R,
denoted by R, takes us from B back to A. The inverse of R is defined by

R ={(b, a)| (a b) E R}.
In other words, bR ~'a iff aRb.

afsn 10y
(&)

Figure 2.4 A numerical example using an arrow diagram.
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IfA=Band R = R, then R is said to be involuntary, or self-inverse, or
symmetric.

Furthermore, if M}, is the matrix of a relation R, then the matrix M, of R '
is the transpose of the matrix of R:

Mg =MRT

The transpose of a matrix, M, is the matrix obtained by writing the rows of M, in
order, as columns.

EXAMPLE:

& -
i

Let M, =

—_
L

Then, Mp-1 =

r'—v—tol SIS

o oo == o= 48

D

2.4.5 Composition

Let R be a relation from A to B and let S be a relation from B to C. Then R and S
lead to a relation from A to C denoted by R o S (or sometimes written simply as
RS). This relation is known as the composition of R and S. It is defined by

R oS = {(a, b) € A X B | there exists b in B such that
(a, b) €E R and (b, ¢) € S}.

R o § can be determined easily using an arrow diagram. Also, one can determine
the matrix of R o § by multiplying the matrices of R and S, i.e.,

Mg.s= MM,

EXAMPLE:

LetA={1,2,3},B={a b c},and C = {a, B, v}.
Let R = {1, a), (1, b).(2. b). (2, ¢), (3, c)} and
§ = {{a ), (b ), (¢ o)}
Then, the diagram is as shown in Figure 2.5.
There is an arrow from 1 to a, followed by an arrow from a to &, meaning that there

is a path or a connection between element | € A and element a € C and hence,
IRSa. Similarly, paths exist

= from 1 to b, then from b to y, meaning 1 RSy
= from 2 to b, then from b to vy, meaning 2 RSy
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Figure 25 An arrow diagram to illustrate the composition relation R and 8

= from 2 to ¢, then from ¢ to a, meaning 2 RS«
= from 3 to ¢, then from ¢ to «, meaning 3 RS«

Accordingly, we can write
RoS ={(l,m), (1,7, 27,2 a),0G, a)}

Similar results could be reached if we multiply the matrix of R, M, and the matrix
of S, Mg, to obtain M, . .

a-bc afB vy
(R o g a[l100
M,= 2 [0 1 llandMS= b [0 0 1}
] W | el 00
a By
1 1050 L o[l G5l
MRD.;=[O 1 1] [0 0 1] 2 [1 0 1]
0 [H=080) 1500

The nonzero entries indicate which elements are related by R o S.

Boolean Algebra

2.5.1 An Overview

In electronics applications, two-element Boolean algebra is particularly important.
The universe is {0, 1}; each set has one element, either 0 or 1 (a set with one ele-
ment is referred to as a singleton). The binary operations can be viewed as a spe-
cial case of set operations; they are summarized in Table 2.2, and simple circuit
models are shown in Figure 2.6.

The AND function of binary logic can be modeled by the circuit shown in
Figure 2.6a. Each switch A and B may assume one of two values, ON or OFF,
which model the logic states one and zero, respectively. The result of ANDing is
modeled by the status of the light. There are four possible combinations of the set-
ting of the two switches, with four possible outcomes that affect the status of the
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light. These are summarized in Table 2.3a. Such a table is usually referred to as a
truth table. The models of the OR and complement are given in Figure 2.6b and c;
the truth tables in Table 2.3b and c.

Instead of a mechanical switch, one may use an electric switch such as diode
or a transistor. Circuits that perform the AND, OR, and complement operations are
available as integrated circuit modules. Instead of drawing the circuit every time,
logic symbols are usually used. They are shown in Figure 2.7.

Table 2.2 Binary operations

Operation Symbol Corresponding Set Operation
OR +,v Union
AND N Intersection
Complement == ) Complement
(Negation)
A B
R B
—
(a) AND
A
y B [
R L
T
(b) OR

T

Figure 2.6 Models for AND, OR, and Complement operations.

T

(c) Complement
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Table 2.3 Summary of the operation of circuits of Figure 2.6
(OFF = 0, ON = 1; Light = 1, No light = 0)

(@) (b) ()
AND OR Complement
A B L A B L A =
0 0 0 0 0 0
0 1 0 0 | 1 0 1
1 0 0 1 0 1
1 1 1 1 il 1 1 0

(a) AND (b) OR (c) Inverter

Figure 2.7 Logic symbols of binary gates.

2.5.2 Boolean Functions

A Boolean functions may assume a value of 1 or 0 depending on the status of each
variable. The value of the function for all possible combinations of the Boolean
variables can be expressed using truth tables.

EXAMPLE:

Let fix, y) = x + ¥, where x and y are Boolean variables. Here we have two vari-
ables, x and y, resulting in four possible combinations. A truth table can be con-
structed as follows.

Variables fxy
X y y Xty
0 0 1 1
0 1 0 0
1 0 1 1
1 1 0 1

This function can be realized using logic gates as shown in Figure 2.8.
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y Dc y

Figure 2.8 Circuit realization of the Boolean function f(x, y) = x + 7.

X

EXAMPLE: Let f(x, y) = x - y; then the truth table will be

X y y f{xy)
0 0 1 0
0 1 0 0
1 0 1 1
1 1 0 0

This function can be realized using logic gates as shown in Figure 2.9.

Since our purpose is not to examine the Boolean logic circuits in detail, but
rather to lay the foundation for the concepts of fuzzy logic, we will not take the
discussion of Boolean functions any further for now.

e Do

X

Dx.p

Figure 2.9 Circuit realization of the Boolean function f(x, y) = x - §.
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Chapter 2 Questions

2-1.
2-2.

2-4.

2-8.
2-9.
2-10.

2-11.

2-12.
2-13.

Give practical examples of sets and subsets.

Use Venn diagrams to illustrate the following operations.
a) AUBUC

b)) ANBNC

¢ ANBUC

. Which of the following sets are equal (if any)?

A={1,23,4),B={2,1,4,3},C=14,3,2,1},D = (1,2, 4,6}
Giventhatl = {1,2,3,4,5,6,7,8,9},A = {1,2,3,4,5},B = {4,5,6,7, 8}, and
C={2,3,7, 8,9} determine

a) ANB

b) ANC

¢c) ANB

d AUB

e) ANB

GiventhatI = {0,1,2,3,4,5,6,7,8,9},A = {1,2,3,4},B={2,4,5,6},and C
= {1, 3,5, 7,9} determine

a) ANMBUCQC

b) AUBNCQC)

c) AUA

. Simplify the following expressions using Venn diagrams.

a) AU(ANB)
b) AN (A UB)

¢) (ANB)U(ANB)

d (ANB)UMARNB)UANB)

. Prove the following identities.

a) ANBUCO =ANBUWKNOC

by INA)UBNA)=A

If A is a set that has n elements, how many elements will P(A) have?

Find the power set of A = {1, 2, 3, 4}.

Giventhat A = {a), a,, o3}, and B = {B,, B,}; determine

a) AXB b) B XA ¢) BXB

Let A = {a, a;, 05}, and B = {B,, B,}, and C = {v,, ¥, ¥;}, and let the relations
R and S be defined as

R = {(al, Bl)1 (a21 B])a (a2, BZ)} ﬂnd

S={(Bi, 1) (B, %), (By, 1), (Bas ¥3)}-

a) Construct an arrow diagram to show the relation R and the relation S.
b) Determine the composite relation R © § using the arrow diagram.
Give an algorithm for multiplying two matrices.

Evaluate

1 1
a) [123]*[2] b) [2]*[123]
3 2]



2-14.

2-15.

2-16.

2-17.

2-18.

¢ [123] %
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—
O W h
Tk

234 1 30
dy b1 2 3] =] 12 1
gisie=s 002

Let A={1,2,3,4},B = {a, B, v, 8}, and C = {a, b, c}, and let the relations R
and § be defined by as

R={1,),(2, 8,3, P}, and S = {(B, a), (B, c), (y, b), (8, c)}.

Determine M . .

The exclusive OR (XOR) function is defined by f(x, y) = Xy + xy. Construct its
truth table and show its circuit realization using AND, OR, and inverter gates.
Construct the truth table for each of the following Boolean functions.

a) fl,y)=x+3

b) flx,y) =% +y

c) flx,y) =xy +xy

d) fix,y) = x+y)

Simplify the following Boolean functions.

a) fix,y) = x(x +y)

b) flx,y) = xy (x + 3)

¢) flx,y) =xy (xy +y)

Construct circuit realizations of the following Boolean functions using AND, OR,
and inverter gates.

a) fo,y)=x +y

b) fx, 3, 2) =xy + 12y

) fl, ) =Xy

d) fir,y) =X+7

e) flx,y,z) =Xz + Xyz + Xyz
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3.1

Fuzzy Sets

Basic Concepts

3.1.1 An Overview

Earlier, the classical or crisp set was defined as a collection of elements. An ele-
ment either belongs to the set or not. The membership grade (or characteristic
function), u,(x), can be either ONE or ZERO; no other values are allowed. This
concept has led to the two-valued Boolean logic, which is very natural for elec-
tronics systems based on switches, since a switch may assume one of only two
possible values. Such a system, however, is not natural to human beings’ percep-
tions. We do not (or should not!) take either of two extreme positions and con-
sider nothing in between. For example, when a universe of students is divided
into “successful” and “not successful,” usually students have varied degrees of
belonging to either of these groups. In the successful group is a whole range from
60% to 100%, the marginally successful to the very successful. Among the non-
successful there is also a range, starting with those who qualify for a make-up
examination and ending with those who will be expelled. In other words, mem-
bership to either group is not just either ONE or ZERO.

In mathematical terms, a fuzzy set has a membership function that allows
various degrees of membership for the elements of a given set. The membership
function may be defined in terms of discrete values, or more commonly (in elec-
tronics applications), by a graph.

26
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If X is a collection of objects denoted by x, then a fuzzy subset A, denoted
~ A, in X is a set of ordered pairs such that

~A = {x, g | xEX]

where p,(x) is the membership function of x in A. Elements with a zero member-
ship are usually not listed. A fuzzy set will be written simply as A, i.e., without
symbol ~, if it is quite clear that we are talking about a fuzzy set.

EXAMPLE:

Consider the statement “a comfortable house for a three-person family,” where the
available houses have up to eight rooms.
The above statement can be described by a fuzzy set A.

A = {(1,0.3), (2, 0.6), (3, 1.0), (4, 0.8), (5, 0.3)}

A house with three rooms has the optimum comfort; a house with fewer or more
rooms is less comfortable, although it may still be considered. Accordingly, a
house with three rooms has a membership of w,(x) = 1, while houses with 1, 2,
4, and 5 rooms have memberships of 0.3, 0.6, 0.8, and 0.3, respectively. Houses
with 6, 7, and 8 rooms have a membership of zero.

Different membership functions may be defined, leading to a different set.
For exampe, A could have been

A=1{(2,04),3,0.8), 4, 1), (5, 02)}.

Obviously, the membership function w,(x) reflects how one may interpret the
vague statement “‘a comfortable house for a three-person family.”

In the fuzzy-sets literature, one finds various methods of describing a fuzzy set.
All methods, however, lead somehow to a clear definition of an ambiguous state-
ment. In the previous example, the degree of comfort, from a single point of view,
was well-defined before writing the fuzzy set. Once an ambiguous statement is
defined somehow, it is no longer ambiguous, at least for the definer! There is noth-
ing fuzzy about fuzzy sets. The name “fuzzy” may then be viewed as just a name
selected to distinguish the class of sets where w,(x) can assume values other than
one or zero. This is exactly like “imaginary’ numbers. They are used for quite real
applications. The name imaginary is just used to denote a different class of numbers.

EXAMPLE:

If you remove one grain of sand at a time from a heap of sand it will eventually
vanish. Which grain is responsible for the disappearance of the heap?

An answer from a philosophical point of view leads to a long, long discus-
sion. Most probably no definite answer will be reached. From an engineering point
of view, you will be required to define first what constitutes a heap of sand. Then,
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the quantity (Heap — n), where n is the number of grains removed, will have a
membership to a fuzzy set based on your definition.

In engineering it appears as if the concern is not with the truth in a philo-
sophical sense, but rather with a working model. We are satisfied with a model that
explains our observations and enables us to produce new devices. We seek
improvement to the model, or even a new one, as our observations are enhanced.
There is, in general, room for more than one model.

It is ironic that the above distinction between engineering and philosophy
may be considered a philosophical point of view—no escape from philosophy it
seems! This situation provides another example of a fuzzy set defined by the
observer. ' ;

Difficulties occur if you are not defining the membership function for
yourself, which is usually the case. Suppose it was the real-estate agent, not you,
who is the one to assign values for u,(x) to describe “a comfortable house for a
three-person family.” How would the task be accomplished? What will be the
meaning of w,(x) in this case? One may be tempted to think of w,(x) in proba-
bilistic terms.

Zadeh distinguishes between probability and possibility. The following
example is one of the famous examples Zadeh put forward to illustrate how pos-
sibility is different from probability [8].

EXAMPLE:

The possibility, m(n) , that Hans ate n eggs for breakfast is

n 0 1 2 3 4 5+
Possibility 1 1 1 0.8 0.6 0.4

Possibilities were assigned to six events. They range from 0 (impossible) to 1
(entirely possible). The values assigned for 7r(n) were suggested to reflect the
degree of ease the observer will feel about the event. Giles [9] suggested a more
general approach is to interpret 1 — 7(n) as the “amount of surprise” the observ-
er expects to experience on being told that n is the case, 1 denoting total surprise,
and 0 denoting no surprise at all. The observer will not be surprised at all to hear
that Hans ate up to two eggs, somewhat surprised if Hans ate three or four eggs,
and very much surprised if Hans ate five or more eggs.

Possibility is distinguished from probability here by the facts that more than
one event has a possibility of one and that the possibilities of all events may add
up to a value higher than one.

Another way of writing a fuzzy set is given in the following example.



Basic Concepts / 29

EXAMPLE:

Let A = “integers close to ten”; then one may write N
A =0.1/7 + 0.5/8 + 0.8/9 + 1/10 + 0.8/11 + 0.5/12 + 0/13.

Sometimes it is more convenient rather to give the graph that represents the mem-
bership function (as in Figure 3.1).

10k S Halx)

! L Ha(X)
0.0 %
(a)

Lol #aup(X)
| g
s e N
0.0 e . %

(d)

Figure 3.1 An illustration of fuzzy AND, OR, and NOT using generalized profile Venn
diagrams. a) membership functions w,(x) and uy(x). b) results of u, 5(x), using

Maup(X) = max [p,(x), up(x)]. c) results of w,g(x), using p,~p(x) = min [p,(x), ug)].
d) results of wz(x), using pz(x) = 1 — ().
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3.1.2 The Support of a Fuzzy Set

The support of a fuzzy set A is S(A), which is a crisp set of all x € X such that
malx) > 0.

The element x in X at which w,(x) = 0.5 is called the crossover point. A
fuzzy set whose support is a single element in X with w,(x) = 1 is called a fuzzy
singleton.

EXAMPLE: LetX =1{1,2,3,4.5,6,7,8,9, 10} and

A= (1, O), 42, 0.1),.(3:0.2), (4,0.5), (5, 0.3), (6, 0.1),.(7, 1), (6, 0),
9, 0), (10, 0)} '

= {(2,0.1), (3, 0.2), 4, 0.5), (5, 0.3), (6, 0.1)}
Then S(A) = {2, 3, 4, 5, 6}

x = 4 is the crossover point.

3.1.3 The a-Level Set

The a-level set is the crisp set of elements that belong to the fuzzy set A at least
to the degree a. In mathematical terms, :

A, = {x € X| p\(») = a}.
The strong a-level set or strong a-cut is defined as

Aa={x €X|u, > a).

A fuzzy set is said to be convex if all a-level sets are convex.

EXAMPLE: Let A = {(1, 0.2), (2, 0.5), (3, 0.8), (4, 1), (5, 0.7), (6, 0.3)}. Then all possible
a-level sets are:
Aoz = 11.2,3,:4,5.6
Aoz =:12:3,4, 3, 6]
Ags=12,3,4,5}

Ay, = 13,4, 5}
Age = [3,4)
A= &}

3.1.4 The Cardinality

The cardinality of a fuzzy set A is defined as
IA{ i 'E IU"A(x)’
TEA




Operations on Fuzzy Sets / 31

and the relative cardinality as

A
= A
X

where |X | is the cardinality of the universe of discourse.

EXAMPLE:

3.2

Let the universe of discourse be X = {1, 2, 3,4,5,6,7, 8,9, 10} and
A= 03),762, 0.5),63, 1), (07 G2 )]
Then |A| =03 +05+1+07+02=27and |X| =10, s0

_ 27 _
|&ll =g = 027

Operations on Fuzzy Sets

3.2.1 Empty and Universal Fuzzy Sets

A fuzzy set is empty iff pg(x) = 0 and universal iff u (x) = 1 for all x € X.
(Mathematicians get tired of writing “for all” over and over again, so they replace
it with V.)

3.2.2 Equal Sets

Two fuzzy sets A and B are equal iff

pa(x) = pn(x)forallx € X.

3.2.3 Absolute and Relative Complements

The absolute complement (NOT) of a fuzzy set A is denoted by A and is defined by
pax) = 1 =, (x) forall x € X.

The relative complement of A with respect to B, denoted by B — A, is defined by
peg(x) = pp(x) — pa(x)

providécj’ that
pp) = pp(x).

EXAMPLE:

Let A = {(0, 0.3), (1, 0.4), (2, 0.6), (3, 0.7)} and
B = {(0, 0.4), (1, 0.6), (2, 0.8), (3, 0.8)}.
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Then
A ={[0,(1-03)]0,0-=04)]I[2 (1 —06)]I[3, 1 — 0.7]}
= {(0, 0.7), (1, 0.6), (2, 0.4), (3, 0.3)}.
and
B — A ={(0,0.1),(1,0.2), (2,0.2), 3,0.1)}.

3.2.4 The Union of Fuzzy Sets

The union of two fuzzy sets A and B is a fuzzy set C given by
C=AUB(orC=A +B) "
where

p(x) = pa(x) \/ pmp(x)
= max [p,(x), ue)]; x € X.

EXAMPLE: Let A = {(4, 0.1), (6,0.3), (8, 0.6), (10, 1)} and
B = {(0,0.3), (2, 0.6), (4, 1), (6, 1), (8, 0.6), (10, 0.3)}.
Then
A U B = max[0, 0.3]/0 + max[0, 0.6]/2 + max[0.1, 1]/4
+ max[0.3, 1]/6 + max[0.6, 0.6]/8 + max[1, 0.3]/10.
= 0.3/0 + 0.6/2 + 1/4 + 1/6 + 0.6/8 + 1/10
= {(0, 0.3), (2, 0.6), (4, 1), (6, 1), (8, 0.6), (10, 1)}
3.2.5 The Intersection of Fuzzy Sets
The intersection of two fuzzy sets A and B is a fuzzy set C given by
C=ANB(rC=A—B)
where
pe@®) = pa(x) A\ pp(x) = min[p,(x), up@)]; x € X.
EXAMPLE: Let A = {(4, 0.1), (6, 0.2), (8, 0.4), (10, 0.5)} and

B = {(0, 0.3), (2, 0.5), (4, 0.7), (5, 0.8), (8, 0.7)}.
Then
A N B = min[0, 0.3)/0 + min[0, 0.5]/2 + min[0.1, 0.7]/4
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+ min[0, 0.8)/5 + min[0.2, 01/6

+ min[0.4, 0.7)/8 + min[0.5, 01/10.
= 0/0 + 0/2 + 0.1/4 + 0/5 + 0/6 + 0.4/8 + 0/10
= {(4,0.1), (8, 0.4)}

EXAMPLE:

Let the membership functions w,(x) and pg(x) be defined by the graph shown in
Figure 3.1a. Then, using the definitions of union (OR), intersection (AND), and
complement (NOT), one can obtain the results shown in Figures 3.1b, ¢, and d.

EXAMPLE:

Show that De Morgan’s Laws hold for fuzzy sets, that is,
AUB=ANB (1)
ANB=AUB (2)

To show that eq. (1) is true is to show that
1 — max[p,(x), up(x)] = min[(1 — p (), (1 — pg(x))].

Now, if w,(x) > py(x), then both sides of the above equation are equal to (1 —
pa(x). If pa(x) < py(x), then both sides become 1 — up(x). Similarly, it can be
shown that equation (2) is an identity.

3.2.6 Models of Fuzzy AND, OR, Inverter

Similar to the case of binary operations, fuzzy operations can be illustrated by sim-
ple circuits. Instead of using switches to represent inputs, we use fuses (a wire that
burns if the current through it exceeds a certain limit, leading to an open circuit
between its terminals). Figure 3.2 shows circuits that illustrate fuzzy AND, OR,
and Inverter operations.

Figure 3.2a shows a simple circuit that illustrates the concept of fuzzy AND.
Two fuses with different ratings are arranged in series in the circuit. The fuse with
the lowest rating determines the maximum current that can go through the circuit
and hence the brightness of the light, i.e.,

Brightness o min[A, B].
Figure 3.2b illustrates the operation of a fuzzy OR. The fuse with the highest rat-
ing determines the brightness of the light, i.e.,

Brightness o max[A, B].
Figure 3.2¢ illustrates the operation of a fuzzy inverter. If the current in the circuit
is unity and the current in the parallel resister is I, then the current through the
lamp is (1 — 1), i.e.,

Brightness a (1 — I).
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(c) Inverter

Figure 3.2 Models for fuzzy AND, OR, and Inverter operations.

3 . 3 Algebraic Operations

3.3.1 Cartesian Multiplication

The Cartesian product of two fuzzy sets A and B is a fuzzy set C denoted by A X
B and defined as

C=AXB = {uc()Na,b)|a€A,bEB, ulc) = min(u,(a), py(b))

EXAMPLE: LetA = 0.4/3 + 1/5 4+ 0.6/7 and
B = 1/5 + 0.6/6.
Then

A X B = min(0.4, 1)/(3, 5) + min(0.4, 0.6)/(3, 6)
+ min(1, 1)/(5, 5) + min(1, 0.6)/(5, 6)
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+ min(0.6, 1)/(7, 5) + min(0.6, 0.6)/(7, 6).
= 0.4/(3, 5) + 0.4/(3, 6) + 1/(5, 5) + 0.6/(5, 6)
+ 0.6/(7, 5) + 0.6/(7, 6)

3.3.2 Algebraic Product

The product of two fuzzy sets A and B is denoted by AB and is defined by
AB = {p,(a) uyb) /x | x EA, x € B}

EXAMPLE:

Let A = 0.8/3 + 0.9/5 + 0.6/5 and
B =0.7/3 + 0.8/4 + 0.3/5.
Then
AB = 0.56/3 + 0.18/5.

It follows from the definition of the algebraic product that A% where « is any
positive number, is

f =) |xE AL

EXAMPLE:

Let A =0.7/3 + 0.8/5 + 0.3/6 + 1/7.
Then
AP = 0.34/3 +0.51/5 + 0.027/6 + 1/7.

The operations concentration and dilation are special cases of A". The con-
centration of A is defined as

CON(A) = A?
while the dilation of A is defined as

DIL(A) = A*®

EXAMPLE:

LetA =07/5+ 05/7 4+ 1/8.
Then

CON(A) = 0.49/5 + 0.25/7 + 1/8 and
DIL(A) = 0.84/5 + 0.7/7 + 1/8.

These two operations are useful in the representation of linguistic hedges.
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EXAMPLE: If the meaning of the term “few’ is defined by
few = 1/1 + 1/2 + 0.8/3 + 0.6/4,
then
CON(few) = 1/1 + 1/2 + 0.64/3 + 0.36/4 and
DIL(few) = 1/1 + 1/2 + 0.89/3 + 0.78/4.

The CON operation distributes over the union, intersection, and product.
Since

(A + B)> = A2+ AB + BA + B? and
AB +BA C A® + B,
then it follows that (A + B)* = A% + B2, which leads to
CON(A + B) = CON(A) + CON(B).
Similarly,
CON(A N B) = CON(A) + CON(B),
and
CON(AB) = CON(A) CON(B).
The operation of concentration can be composed with itself. Thus
CON*(A) = A*,
or, more generally,
CON%(A) = A*?
where « is any integer = 2.
A pictorial representation of the effect of the CON operation is shown in
Figure 3.3.
The CON operation reduces the value of u,(x) for every x except where u,(x) = 1.
It is interesting to observe that as & — oo, u,(x) becomes two-valued, 1 or 0.

The CON operation makes a set less fuzzy and leads to crisp sets in the limit.
Similarly, the dilation operation can be generalized as

DILI/C!(A) — AO.S."D:

where @ = 2.
In the limit as & — oo the DIL opeation leads to the universe of discourse.
Closely related to the CON operation is the so-called “contrast intensifica-
tion.” This operation increases the values of u ,(x) that are above 0.5 and reduces
those that are below 0.5. The result of applying a contrast intensifier INT to a
fuzzy set A is denoted by INT(A), thus

Minray(®) = pa(x) for p,(x) = 0.5
Fanray(®) = pa(x) for p,(x) = 0.5.
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p(x)
A
1.0 /_
CON™1(A)
CON72(A)
Qp >y
0.0

X

Figure 3.3 Effects of CON operation on the membership function.

This definition leads to a possible expression for such an operator as
M) = 2p,2(x) for0 = w,(x) = 0.5
Mm@ = 1= 2 [1 = 2p,(0) for 0.5 = ,(x) = 1.
The intensification operation distributes over the union, intersection, and product:
INT(A U B) = INT(A) U INT(B)
INT(A N B) = INT(A) N INT(B)
INT(AB) = INT(A) INT(B)

3.3.3 Algebraic Sum

The algebraic sum of fuzzy sets A and B is a fuzzy set C,
C=A+B, '

where
Be(x) = pa(x) + pp(x) = pax) pp(x).

Do not confuse the algebraic sum with the OR operation.

EXAMPLE:

LetA = 0.5/3 + 1/5 + 0.6/7 and
B = 1/3 + 0.6/5.

Then C is composed of three members, 3, 5, and 7, with membership functions
pe(ny), pe(xy), and pic(xy), respectively.

M) =05+1-10.5 =1

Melxy) =1+ 0.6 + 1(0.6) = 1

Helxy) = 0.6 + 0 — 0(0.6) = 0.6
Thus, C=A + B =1/3 + 1/5 + 0.6/7.
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3.3.4 Bounded Sum

The bounded sum of two fuzzy sets A and B is denoted by
C=A®B

where
pc(x) = min(l, p,(x) + ug(x)).

EXAMPLE: Let A = 0.5/4 + 1/5 + 0.6/7 and
B = 0.3/4 + 0.6/5.

Then the bounded sum C is composed of three members, 4, 5, and 7, with mem-
bership functions uc(x,), puc(x,), and pe(x;), respectively.

#e(x;) = min(1, 0.5 + 0.3) = 0.8

Me(xy) = min(l, 1 + 0.6) = 1

Me(x;) = min(1, 0.6 + 0) = 0.6
Thus, C=A DB = 0.8/4 + 1/5 + 0.6/7.

3.3.5 Bounded Difference

The bounded difference of two fuzzy sets A and B is denoted by
C=AGB

where
pe(x) = min(l, (uy(x) — pg(x).

EXAMPLE: LetA = 0.5/3 + 0.3/5 + 0.6/7 and
B = 0.3/3 + 0.2/5.

Then the bounded difference is composed of three members, 3, 5, and 7, with
membership functions uq(x,), pc(x,), and He(xs), respectively.

Me(x;) = min(1, 0.5 — 0.3) = 0.2

#c(xy) = min(1, 0.3 — 0.2) = 0.1

Me(x;) = min(1, 0.6 — 0) = 0.6.
Thus, C=A OB =0.2/3 + 0.1/5 + 0.6/7.
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The bounded-difference operation is particularly useful because operations such
as intersection, union, complement, absolute difference, implication, and equivalence
can be expressed by bounded-difference operations (and arithmetic sums) [7].

EXAMPLE:

Show that

palx) A\ ppx) = pgln) © (ua(x) © p(@)).
One may write the LHS as
pp(x), for p,(x) = pp(x),
tea(x), for puy(x) < pup(x).

since pp(x) © pa(x) =|pg(x) — wa(x), for uy(x) = p,(x),
0, for pyp(x) < pa(x), (1

then one can examine the RHS under the two conditions py(x) > w,(x) and
() < pa().
» If pp(x) > pa(x), then
pp(x) © pa(x) = pg(x) — wa(x), and hence
M) © (up(0) © pa(x0) = pp(x) — (pg(x) — p(x))
= (X
o If pg(x) < pa(x), then pg(x) © w (x) = 0, and hence
p(x) © (pp(x) © palx) = up(x) © (0) = up(x).
The results may be summarized as
pa(x) © (up(x) © wa(x)) = ug(x), for py(x) = pg(x), (2)
A (X), for py(x) < pg(x).
From (1) and (2) one may conclude that

Ma() N\ pp(x) = () © (up(x) © py(x).

JINEY) A Mp(x) =

It can also be shown that

= for union A \/ B,
MealX) \/ pp(x) = pa(x) + (p(x) © pa(x)).
= for absolute difference, |A = Bl,
A = ()] = (14 () © pp(x) + (up(0) © pa(x)).
= for implication, A — B,
Halx) = pp(x) = 1S x © y).
» for equivalence, A =2 B
Ha() 2 pp(x) = 1 © (s (1) © py(x) + (p(x) © g, (x)).
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3.3.6 Convex Combination

The convex combination of n fuzzy sets A, A,, . . ., A, is a weighted combination
of these sets that leads to a fuzzy set A, where

paA) = 01(0) pa () . F 0, (5) pry ()
with the weights being such that @,(x) + ... + w,(x) = 1.

EXAMPLE:

Let A, = 0.7/2 + 1/4 + 0.7/5 and
A, = 0.3/2 + 1/3 + 0.4/5.
Suppose w, = 0.8 and w, = 0.2. Then
A=(08X07+02x03)/2+0.8/4+ 02/3+ (0.8 X0.7+ 02X 04)/5
= 0.62/2 + 0.8/4 + 0.2/3 + 0.64/5.

3.3.7 Fuzzification

The process of fuzzification transforms a set (fuzzy or crisp) to an approximating
set that is more fuzzy. This process is a generalization of the dilation operation.
The essence of the fuzzification process is point fuzzification. Point fuzzifi-
cation transforms a singleton set 1/u in U to a fuzzy set u that varies around u. The
symbol ~ is used to denote a fuzzifier. For example, ~ 50 represents the fuzzy set
of real numbers that are approximately equal to 50 (selected, of course, from the
universe of discourse). In order to express the dependence of u on ~ u, ~ u is writ-
ten as # = K(u). The fuzzy set K(u) is referred to as the kernel of fuzzification.

EXAMPLE:

Let the universe of discourse be
U=1+2+3+4.

Let A be a singleton set given by 1/2. Then one may define K(2) as
K(2) = 0.5/1 + 1/2 + 0.7/3 + 0.2/4, ‘

and hence,
~ A ={0.5/1, 1/2,0.7/3, 0.2/4}

The choice of how to fuzzify, i.e., the description of K(u) depends on the
meaning of the sets and your criteria.
Now, consider a general case; let

A= e, + ...+ i,
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Since every member and its membership grade is independent of other members and
their membership grades, then one may assume that the process of fuzzification is
linear, and superposition may be applied, i.e., fuzzifying each member alone.

The process of fuzzification of w,/x; gives rise to two special cases: one
where w;, is kept constant and x, is fuzzified (support fuzzification), and the other
where w, is fuzzified and x; is kept constant (grade fuzzification). We will exam-
ine each case in a little more detail.

1. Support fuzzification (s-fuzzification)
Support fuzzification of A is denoted by SF(A; K) and defined as

A =SFA;K) = p, K(x) + ... + », Kx),

where u,; K(x,) is a fuzzy set that is the product of a scalar constant y; and
a fuzzy set K(x,).

EXAMPLE:

Let the universe of discourse be
U=1+2+ 3+ 4, and let
A =0.8/1 + 0.5/2.
Assume
K(1) = 1/1 + 0.3/2 and
K(2) = 1/2 + 0.3/1 + 0.2/3.
Then
SE(A; K) = 0.8(1/1 + 0.3/2) + 0.5(1/2 + 0.3/1 + 0.2/3)
= (0.8/1 + 0.24/2 + 0.5/2 + 0.15/1 + 0.1/3.
Since the union is a maximizing operation, then
SE(A; K) = 0.8/1 + 0.5/2 + 0.1/3.

An important difference between the s-fuzzification and dilation operations
is that a dilation of a crisp set yields the same crisp set, which is not the case, in
general, with s-fuzzification.

2. Grade fuzzification (g-fuzzification)
Grade fuzzification of A is denoted by GF(A; K) and defined as

A= ORA K= Ko i, + . .. + K,
where K(u;) denotes point fuzzification of ..

EXAMPLE: Let the universe of discourse be

U=1+2+ 3+ 4, and let
A = 0.8/1 + 0.5/2.
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Then
GF(A; K) = A = 0.8/1 + 0.5/2.

If we define
K(0.8) = 1/0.8 + 0.7/0.6 + 0.3/0.5 and
K(0.5) = 1/0.5 + 0.6/0.4 + 0.5/0.3,

then
A = (1/0.8 + 0.7/0.6 + 0.3/0.5)/1 + (1/0.5 + 0.6/0.4 + 0.5/0.3)/2

Fuzzy Relations

3.4.1 Fundamental Concepts

The concept of relations discussed in section 2.4 may be extended to fuzzy sets. A
fuzzy relation from a fuzzy set A to a fuzzy set B is
R=AXB={(a,b)|a€EA bEB).

When A = B, R is known as a fuzzy relation on A.

Given the finite sets A = {a, a,, .. .,a,} and B = {b,, b,, .. ., b,}, a fuzzy
relation A X B can be expressed by an m X n matrix:
( pgla, b)) pglay, by) <o Mglay, by)
Brlay, b)) pglay, by) oo pglag, by)
M, =
JU’R(am’ bl) Ju‘R(am’ bz) T g ru‘R(am’ bn)

This matrix is referred to as a fuzzy matrix. The elements of the fuzzy matrix have
values within the interval [0, 1], since u, has values within that range.

EXAMPLE:

Let A = {a,, a;, a3} and B = {b,, b,, by, b,}. Let R be a relation from A to B,
given by
R = 0.1/(a,, b;) + 0.8/(a,, b,) + 0.8/(a,, by) + 0.1/(as, b,)
+ 0.8/(as, b)) + 1/(a;, by) + 0.8/(a;, b,).

The corresponding fuzzy matrix Mj is a 3 X 4 matrix with entries Lg(a, b) that
correspond with cell (a, b) such that
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Figure 3.4 A fuzzy arrow graph for the relation R from A to B.

by b, by b,

a, 0 0 0108
My=a, 0 080 0
e 0rng 1l 08

The corresponding fuzzy graph is shown in Figure 3.4.

EXAMPLE: Let a fuzzy relation R on A = {a,, a,, a;} be
R = 0.2/a,, a,) + 0.5/(a,, a,) + 0.4/(a,, a,) + 1/(a,, a,)
+ 0.3/(a,, a;) + (a,, a,) + 0.7/(a,, a;).
Then the fuzzy matrix for R is a 3 X 3 matrix:

a, d, da;

a, 102 05 04
M,=a, |00 1 03
a; |00 1 .07

The corresponding fuzzy graph is as shown in Figure 3.5.

Since the fuzzy relation from A to B is a fuzzy set in A X B, the operations
for fuzzy sets can be used.
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0.2

-

G D

Figure 3.5 A fuzzy arrow graph for the relation R on A = {a,, a,, a;}.

EXAMPLE:

Let R and S be binary relations defined by matrices M, and M. Let

Qe 06103
M,=10 01 1 |[and
1 0708

0.7 0.8 1
MS =2 50550
03 0 01

Then, R N § will be described by My ¢ given by

min(0.1, 0.7) min(0.6, 0.8) min(0.3, 1)
min(0, 0.2) min(0.1, 0) min(1, 0)
min(0.1, 0.3) min(0.7, 0) min(0.8, 0.1)

O 060
=l 0000
0.1 . (0L

3.4.2 Composition of Fuzzy Relations

Consider two fuzzy relations R on A X B and S on B X C. Contrary to crisp rela-
tions, fuzzy R and S may be composed in various ways, since u, and g can
assume values in the range [0, 1], not just O or 1. Their composition is denoted by
R © § and is a fuzzy relation on A X C. The best known and the most frequently
used is the so-called “max-min” composition. It is defined by
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o s(@, ©) = {max min (ux(a, b), pola, b)) | (2 ).
bEB

This may also be written

Hrosl@ ©) = V (i@ b) N\ poa, b))
b

EXAMPLE: LetA = {a,, a,}, B = {b,, b,, b3}, and C = {¢,, c,}. Let R be a relation from A
to B defined by the matrix
r bl b2 b3
4104 05 0
@102 038 02|

Let S be a relation from B to C defined by the matrix
=G G

b 0.2 0.7

b, 0.3 0.8

b, e ED

Then the max-min composition of R and § is

e
bbb b ' 0 G
Rog=% O.Ai 0.§ 6 : bl gg g; A5 E [m 1nr
= , |03 08]=
a, |02 0.8 02 b 1 3 a | p q

where

m = max{min(0.4, 0.2), min(0.5, 0.3), min(0, 1)}
= max[0.2, 0.3, 0] = 0.3

7 = max[min(0.4, 0.7), min(0.5, 0.8), min(0, 0)]
= max[0.4, 0.5, 0] = 0.5
p = max[min(0.2, 0.2), min(0.8, 0.3), min(0.2, 1)]
max[0.2, 0.3, 0.2] = 0.3
max[min(0.2, 0.7), min(0.8, 0.8), min(0.2, 0)]
= max[0.2, 0.8, 0] = 0.8 !
Other kinds of compositions for fuzzy relations can be defined. For example,
= min-max composition (sometimes written as R 2 §). It is the dual compo-
sition relation of max-min composition.
« max-product composition defined by
R oS = {[(a, ), max(ug(a, b) -psa )], a EA, b €B,c € C}.
b
= max-av composition defined by
Ro 8 = {[(g, ¢), 4 max (ug(a, b) + psa, c)l,a EA,bEB, c € C}.
av

q
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3.4.3 Various Types of Fuzzy Relations

Let R be a fuzzy relation on A X A then for any x, y, z € A, R is said to be:
« reflexive if pp(x, x) = 1 and p(x, y) < 1,y # x.
Example:

103 6.2
M,=|04 1 07
0509 1

= antireflexive if pg(x, x) = 0.

Example:

0 03 04
My=[01 0 07
0.1 05 0]

= symmetric if pg(x, ¥) = pe(y, x) (columns and rows are the same).

Example:

02 0.7 04
M, =07 09 0.
04 0.1 03

= antisymmetric if py(x, y) # pg(y, x) (columns and rows are not the same).
Example:

03 0.5 0.7
M,=| 1 05 02
03 02 0.8

max-min transitive if pg(x, z) = max min(u(x, y), u(y, 2)).

A fuzzy relation is said to be a pre-order if it is reflexive and has max-min
transitivity. If it is reflexive, symmetric, and has max-min transitivity, it is said to
be a similarity relation. If it is reflexive and symmetric, it is said to be a resem-
blance relation.

A fuzzy relation is said to be an identity relation, /, if the diagonal elements
of M, are ones.

It is a zero relation, 0, if all the elements of M, are zeros, and a universe rela-
tion, E, if all elements are ones. For example,

10 0 000| i I
I=10 10/ 0=1000] E=[111
001 000 (55 e

The composition of fuzzy relations plays an important role in fuzzy control as we
discuss it in Chapter 5.
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Geometrical lllustration

A geometrical model of fuzzy sets was put forward by Kosko [10]. The model is
very helpful in illustrating various concepts pertaining to fuzzy sets. In the fol-
lowing we give a simplified, brief account of that model.

Consider a crisp set of two elements such as X = {x,, x,}. The power set is
then given by {®, X, {x,}, {x,}}. Each of the four subsets may be coded by two
bits, i.e., @, X, {x,}, and {x,} may be coded as [0 0], [1 1], [1 0], and [0 1], respec-
tively. The presence of the ith element, x,, is represented by 1 and its absence of 0.
Each of these points may then be assigned to a vertex of a two-dimensional unit
cube (i.e., a square) as shown in Figure 3.6. If X had been a crisp set of n elements,
each crisp subset would have been represented by one of the vertices of a unit
hypercube in n dimensions.

Fuzzy subsets can be represented by other points within the hypercube (with-
in a square in our case). Figure 3.6 also shows the representation of fuzzy subset

= [0.3 0.8]. Element x, belongs to A to the degree 0.3, while element x, belongs
to A to the degree (.8.

The subsets resulting from the complement, union, and intersection operations
may also be represented by points within the square as shown in Figure 3.7. The
point at the middle represents a maximally fuzzy set. The middle point set has the

property
K= A= AR

Kosko [10] suggested further that the properties of the middle point may be
used to measure the fuzziness of a subset. A subset A is properly fuzzy iff A N A #
® and A U A # X. The closer the point representing A to the middle, the fuzzier
the set. A measure of fuzziness can then be defined as

E@A) =

where « is the distance of A to the nearest vertex and b is the distance of A to the
farthest vertex.
From the geometry of Figure 3.7 one may conclude that

M(A N A)

EA) = MA U A

45
b

where a and b are defined as “fuzzy Hamming distance,” rather than Euclidean
distance. The Hamming distance between sets A and B is defined as

Sl —
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Figure 3.6 Point representation of fuzzy sets. The vertices of the square represent crisp
subsets. Other points represent fuzzy subsets; for example, fuzzy subset A is represented
by the bit vector [0.3 0.8].

and M(A) is a cardinality measure defined by
M(A) = Zm,(x,).

EXAMPLE: Let A = [0.3 0.8].

Then the near vertex A, = [0 1] and
the far vertex A;, = [1 O].
Accordingly,a =03+ 02=05and b= 0.7 + 0.8 = 1L.5.

ﬁmﬂM=%=%

Equivalently, we could have used the relation

_MANA)
HM_MMUE'
Thus, if A = [0.3 0.8], thenA = [0.7 0.2], and
A NA = [min (0.3, 0.7) min (0.8, 0.2)] = [0.3 0.2], leading to
MANA =02+03=0.5.
Similarly, M (A U A) = 1.5, and hence

HM=§
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Figure 3.7 Point representation of various fuzzy subsets.

Note that at a vertex a = 0, and hence E(A) = 0, indicating a non-fuzzy set.
At the middle point a = b, and hence E(A) = 1, indicating a maximally fuzzy set.

EXAMPLE:

Show that

E(A) = E(A) = E(A N A) = E(A U A).
The validity of the above identities may be realized from Figure 3.7. From that fig-
ure, the distance between A, A, A N A, and A U A and the nearest vertices {x,},
{x;}, @, and X, respectively, are the same; the distances to the farthest vertices
{x,}, {x,}, X, and @, respectively, are also the same.

Equivalently, we could have used the following relations:
MMBNA) _M@ANA)
MAUA MAUA)
M(ANA)NANA)
M((A NA)U (AN A))
_MANANAUA))

M(A NA)U (A UA))

_M(ANAUMANA)
M((A U A) N (A UA))

E(A) = = E(A)

EANA)=




3.6

50 / Fuzzy Sets

_MANA) _
M(A UA) B
M(A UA) N (AUA)
M(A UA)U (ANA))
_M(AUA)N(ANA)
M(AUA)U (AUA)
_MANA) _
M(A U A) £
Hence, E(A) = E(A) = E(A UA) = E(A N A). :
The previous two examples illustrate that it is advantageous to use the
geometrical model in certain situations.

E(AUA) =

Philosophical Implications

Through the history of science and engineering, numerous philosophical ques-
tions have been raised and varied logical conflicts have been encountered. Some
of them remain as paradoxes. A famous paradox in classical set theory is that of
the army barber who was ordered to shave everyone in the camp who does not
shave himself. Then who shaves the barber? If he shaves himself, then he should
not. If he does not, then he should! Another well-known paradox is that of a
glass that can hold up to, say, 300 mL of water. If the glass has in it 150 mL, is it
full or empty?

Electronics is defined as the study and design of control, communication, and
computing devices that rely on the movement of electrons in circuits containing
semiconductors, thermoionic valves, resistors, capacitors, and inductors [11]. Thus,
the essence of electronics is the electron—so what is an electron? It is of paradoxi-
cal nature; some experimental results can be explained if the electron is assumed to
be a particle, while other experimental results can only be explained if the electron
is assumed to be a wave. So, what is an electron? An electron is an electron [12].
Engineers may accept that as long as the behavior of the electron can be predicted.
The behavior may be predicted through the so-called Schrodinger’s equation.

The tendency in engineering and technology is that if an argument or a pro-
posal can lead to a device or a system that works, then the argument is vindicated.
If the device or the system can be sold (and no one sues you), then we are talking
about a celebrated idea—all paradoxes can wait to be solved later!

Fuzzy set theory is no exception; it has its own paradoxes. Some of the para-
doxes can somehow be eased, while some may need more thinking. Scientists and
engineers do not have to wait until everything is crystal-clear before looking into
the practical applications of the theory.
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A detailed discussion of the philosophical issues raised by the fuzzy set theory
has been given by Hisdal [13-15]. The following is an outline of some of these issues.

A major objective of fuzzy set theory is to enable a machine to “think”’ like
people, in other words, to enable a machine to use the natural language and rea-
soning of human beings. The heart of the theory is the membership function.
Numerical membership values are, however, not a common practice in natural lan-
guage communication. Thus, an exact correlation between the membership func-
tion and human thoughts is illusive. For example, a possibility of one does not
mean certainty, as opposed to a probability of one. What physically is possibility
supposed to mean? The example given by Zadeh and the elaboration of Giles (as
discussed earlier) may ease this difficulty.

The max-, min-, and one-minus-formulas for the OR, AND, and negation
operations, respectively, seem to have come from nowhere! The same thing
applies to the shapes commonly used for membership functions (bell-shaped for
external concepts such as “tall” and S-shaped for non-external concepts such as
“medium”, linear approximations of these shapes are also used.)

Although these formulas and functions have been used successfully in prac-
tical applications, they lead to some paradoxical situations; for example,

1. The union of a fuzzy set and its complement is, in general, not equal to
the universe of discourse. (Ironically, this property was used as a measure
of fuzziness as outlined in Section 3.5.) If we refrain from thinking in
terms of classical sets, this may not really be a paradox. It seems, however,
there is a duality in the way people think. Although a fuzzy set concept
may be close to the way people think, the idea of producing everything
(the universe of discourse) by combining what we select and what we
leave out (objects and their complements) seems to be deeply engraved in
the way people think!

2. The occurrence of a depression in the OR-curve, where none should have
existed. Figure 3.8b shows an example of such a situation,

3. The lack of distinction between the outcome of an AND and an OR oper-
ation at the crossover point. Figure 3.8c shows another example.

If you are intrigued by these ideas, then you will enjoy reading the original work
on the topic by Hisdal [13-15].

Chapter 3 Questions

3-1. Given the fuzzy set A = {(a/0.4), (,/0.3), (a3/0.7)}:
a) Write the set in an alternative format.
b) Explain the meaning of the set.

3-2. Would the membership values in a fuzzy set add up to unity always? Explain the
significance of your answer.
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Figure 3.8 a) u,(x) and py(x) are membership functions of concepts such as “medi-
um’” and “tall,” respectively; b) The depression of value y should not be there (according
to the way people think); ¢) gy g(x) = panp(¥) at the crossover point.




3-3.

3-4.

3-7.

3-8.

3-9.

3-12.

3-13.

3-14.

3-15.

3-16.

3-17.
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If an item has a partial membership in several sets, would all membership values
add up to unity always? Explain the significance of your results.

Suggest a fuzzy set to describe the statement “comfortable temperature.”

a) from your point of view

b) from a polar bear’s point of view

¢) from a camel’s point of view

Assume the universe of discourse, in absolute temperatures, to be {260, 270, 280,
300, 310, 320).

. Determine all possible a-level sets of

A = {(1, 0.3), (2, 0.4), (3, 0.5), (4, 0.6), (5, 0.3), (6, 0.2)}.

. Determine all possible strong a-level sets of

A = {(1,03), (2, 0.4), (3, 0.8), (4, 0.5), (6, 0.3)}.

Let A = {(0, 0.2), (1, 0.3), (2, 0.5), (3, 0.6), (4, 0.8)} and B = {(0, 0.4), (1, 0.5),
(2,0.7), (3, 0.8), (4, 0.9)}; determine

a) A b) B c) (B-A)

Given that A = {(a, 0.2), (8. 0.4), (7, 0.7), (8, 0.4)} and B = {(e, 0.4), (B, 0.6),
(v, 0.2), (6, 0.8)}, determine

a) AUB b) ANB c) ANB d AUB

Given that A = {(a, 0.2), (8, 0.7), (8, 0.4)} and B = {(a, 0.4), (3, 0.3), (v, 0.3)},

determine
a)AUB b)) ANB

. Given that A = 0.2/3 + 0.5/4 + 0.8/5 and B = 0.8/5 + 0.2/8, determine the

Cartesian product of the two sets; A X B.

. Given that A = 0.2/3 + 0.5/4 + 1/5 + 04/6 and B = 0.3/3 + 0.2/4 + 0.7/5 +

0.6/6, determine the algebraic product of the two sets.

Given that A = 0.2/a + 0.4/138 + 0.3/8, and B = 0.4/ + 0.3/8 + 0.2/, deter-
mine the algebraic product of the two sets.

Given that A = 0.2/3 + 0.5/4 + 0.3/5 + 1/6, determine

a) CON(A) b) DIL(A)

Given that A = 0.3/4 + 0.5/5 + 0.6/6 + 1/7 and B = 0.2/4 + 0.7/5 + 0.2/6 +
0.5/7, determine

a) CON(A) b) CON(B) ¢) CON(A N B)

Given that A = 0.2/4 + 0.8/5 + 0.3/6 and B = 0.3/4 + 0.2/6, determine

a) the algebraic sum of the two sets

b) the bound sum of the two sets

Given that A = 0.8/4 + 0.7/5 4+ 0.3/6 and B = 0.5/4 + 0.1/5 + 0.8/6, determine
the bounded sum of the two sets.

Given that A = 0.6/4 + 0.5/6 + 0.7/8 and B = 0.3/4 + 0.5/8, determine the
bounded difference A © B.
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3-18.

3-19.

3-20.

3-21.

3-22.

3-23.

#3-24.

*3-25,

3-26.

LetA = {a), oy}, B = {8}, B,}, and C = {,, 75, ¥;}. The relation R from A to B
is given by R = 0.1/(«ar;, B,) + 02/(ex;, B,) + 0.4/(cx,, B,), and the relation S from
B to C is given by § = 0.2/(B,, v)) + 0.4/(a;, B,) + 0.2/(3,, ¥,) + 0.8/(B,. v,) +
0.1/(B,, v5). Construct a fuzzy arrow diagram to show the relations S and R,

Let the universe of discourse be given by

U = {5, 15, 20, 30, 40, 60, 80, 90}.

a) Suggest a fuzzy set to describe the term “young.”
b) Suggest a fuzzy set to describe the term “old.”

¢) Derive a fuzzy set to describe “not old.”

d) Derive a fuzzy set to describe “very young.”

Ostergaard (in Fuzzy Automata and Decision Process, ed. Gupta et al. (North
Holland, 1977) defined the linguistic variables “large positive,” and “medium pos-
itive,” “small positive,” and “large negative™ analytically by

oo~ (51 e - (6225

; sy
L —exp| - (‘O%—x‘ 4], and

1 — exp [ i ( !“—IUE—T[ )2'5], respectively. Sketch a graphical representation of

these variables.

Develop graphically membership functions to describe the linguistic variables
“cold,” “warm,” and “hot.” The temperature range is 0°C to 100°C.

Use the graphs developed in the previous question (3-21) to define graphically the
following:

a) NOT warm

b) warm OR cold

¢) warm AND hot

Give possible reasons for triangular membership functions being frequently used,
particularly when the height of intersection of each two successive fuzzy sets is
equal to one-half.

Blin and Whinston in their paper “Fuzzy Sets and Social Choices,” Journal of

Cybernetics, (1974): 3, 4, 28-35, reported on an application of fuzzy sets and fuzzy

relations.

a) What was the aim of the paper?

b) Explain briefly how the problem discussed illustrates the distinction between
fuzziness and probability.

Compare and contrast the approach of Echauz and Vachtsevanos (IEEE Trans.
Education 38 (1995): 158-165) and that of Biswas (Fuzzy Sets and Systems 74 (1995):
187-194) in evaluating and grading students’ performance using the concepts of
fuzzy sets.

Mark the following statements as true or false; correct the false statements
meaningfully.
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1) This question uses binary logic only.
2) A classical set will typically have a normal distribution graph describing its
membership function.
3) The support of a fuzzy set is a crisp set.
4) The law of excluded-middle does not apply to fuzzy sets.
5) DeMorgan’s theorems do not apply to fuzzy sets.
6) A membership function for a classical set cannot be defined.
7) The values of membership in a given set can never add up to one (or 100%).
8) The fuzzier a set is, the more similar it is to its complement.
9) Precision and accuracy are the same thing.
10) The CON operation always reduces the value of membership.
11) The CON operation makes a fuzzy set less fuzzy.
12) In the limit, the DIL operation leads to a singleton set.
13) There is more than one algorithm for fuzzification.
14) A fuzzy set ANDed with its complement will not necessarily result in the uni-
verse of discourse.
15) The order in which the fuzzy AND operation is done does not make any dif-
ference on the outcome.
16) The order in which the Cartesian product of two fuzzy sets is done does not
make any difference on the outcome.
17) A fuzzy set is a collection of items that we know nothing about.
18) Membership functions are commonly normalized by setting the maximum
value to one and scaling all other membership values proportionally.
19) Fuzzy sets describing a universe of discourse have to be symmetric.
20) Fuzzy sets describing a universe of discourse should not overlap.
21) An a-level represents a threshold restriction based on a membership value.
22) Continuous membership functions have to be of a triangular shape.
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4.1

Fuzzy Logic and Algebra

Fuzzy Logic

Fuzzy logic is based on the concepts of fuzzy sets. The truth value of a formula
can assume any value in the interval [0, 1], as opposed to Boolean logic, where
two values (0 and 1) are allowed.

Let T(S) denote the truth value of a formula S. The evaluation procedure for
a formula in fuzzy logic may be described as follows:

(1Y IS = TA)ifS = A
2) TS)=1-TMR)ifS =R

(3) T(S) = min[T(S,), T(S,)]if S =S, - S,
(4) T(S) = max[T(S,, T(S)]if S =S, + S,

Note that two-valued logic is a special case of fuzzy logic; all the rules
stated above are applicable in two-valued logic.

EXAMPLE:

LetS = (P + Q) R.
Assume T(P) = 0.1, T(Q) = 0.7, and T(R) = 0.6; then
T(S) = min{max[T(P),T(Q),[1 — T(R)]}
= min {0.7, 04} = 0.4

57
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If we assume T(P) = 1, T(Q) = 0, and T(R) = 0, then

T(S) = min {max[T(P), T(Q)].[1 — T(R)]}
= min{1,1} = 1

(In Boolean algebra, S=(1+0)-1=1-1 =1.)

In systems using two-valued logic, one stores a statement A if the truth value
of A is 1 and a statement A if the truth value of A is 0. In fuzzy logic systems, one
stores a statement A if the truth value of A is greater than or equal to that of A, ie.,
if T(A) = 1 — T(A), which leads to T(A) = 0.5.

A formula S is said to be satisfied if T(S) = 0.5, and falsified if T(S) = 0.5.
With this definition, one should realize that not satisfying is different from falsi-
fying, and not falsifying is different from satisfying.

Fuzzy Algebra

4.3

The concepts of crisp sets (where the membership function is either 1 or 0) were
used in conjunction with Boolean algebra. Similarly, the concepts of fuzzy sets are
used in conjunction fuzzy algebra; the term “fuzzy variable” replaced the term
“membership grade” of a fuzzy variable in a set.

There is a close similarity between Boolean algebra and fuzzy algebra; how-
ever, it should be noted that in Boolean algebra the conditions: xx = 0 and x +
X = 1 always exist, which is not the case in fuzzy algebra. Accordingly, every
Boolean algebra is a fuzzy algebra but not vice versa.

Truth Tables

Fuzzy logic is multivalued, i.e., a variable may assume one of many possible val-
ues (more than two in general). Let us consider the simplest fuzzy logic scheme to
see how it may work. Assume a three-valued logic: true (T), false (F), and
unknown (T + F). One then may define the following truth tables for AND, OR,
and complement.

A T F T+F
T T F T+F
F F F F

T+F T+F F T+F
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Fuzzy Functions

A fuzzy logic function f (x, y) may assume infinitely many values in the range
assigned (closed range [0, 1] for normalized functions). The range may be subdi-
vided into m classes, leading to an m-valued logic problem. The objective of the
analysis of a given fuzzy logic function is to determine the conditions that must be
satisfied by fuzzy variables in order for the function, f, to belong to a certain class
m where :

TElassls oy =f=1
Class 2: o, <f<

Classm:0=f=aq,_,

withl > >a,>..>a > 0.

Wil

EXAMPLE:

If f(x, y) = x + ¥, determine the conditions that must be satisfied by the fuzzy
variables x and y so that f (x, y ) belongs to Class 2, where classes are defined as
follows:

Class 1: 06 =f(x,y)=1

Class 2: 0.3 <f(x, v)<0.6

Class 3: 0=f(x, y) =03
For f{x, y) to belong to Class 2, the following condition applies

03 <f(xy) <06
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This can be divided into two groups:

Group 1: x +y > 0.3, and
Group 2: x + y < 0.6. o
Note that x + y > 0.3 gives G-
x>03 ory>03
y<0.7

and

x+y < 0.6 gives

xy>04 (using DeMorgan’s Law).
This leads to the condition y > 0.4 and ¥ > 0.4, or in other words, y > 0.4 and

x < 0.6. Thus, for f(x, y) belong to the class 0.3 < fix, ) < 0.6, x and y must
satisfy the following conditions:

Group 1: [x > 0.3 ory < 0.7], and
Group 2: [x < 0.6 and y > 0.4].
In general, if f(x, y ) = x + ¥ belongs to class m, i.e.
G =y = 4,
then the conditions would have been
Group 1: [x=a,ory=1—a,], and
Group 2: [x <a,_,andy>1-—a,_,]

EXAMPLE: Iff(x y, z) = xz + y Z, determine the conditions that must be satisfied by the fuzzy
variables x, y, and z so that f(x, y, z) belongs to class m, in other words,

a,=fxyz)<a,_,
xz+y 7 = a, gives

Group l: x =g, andz =g, 0ory=g,andz<1 — a,,
andxz +y Z <a, _, gives
Groups 2:x<a, _,andz<a,_,ory<a,_ ,andz>1-a,_,.

EXAMPLE: Determine the conditions that must be satisfied by the fuzzy variables x, ¥ and z
so that

feaxz) = & +2)§ +z)satisfiesa, = f(x, yz) < & - 1
The condition a,, = (x + y)(y + 2)leads to

x=a, z>=a,
Group 1 = ory=a, and ory<1l-a,lf
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The condition (x + y)(y + z) <a,, _ leads to
r X<am*l Z<a:mﬁl
g 0ry<am_l oy =T—a ||

Concepts of Fuzzy Logic Circuits

Any Boolean function may be implemented using three basic circuits: AND, OR,
and INVERTER. Likewise, any fuzzy function may be implemented using fuzzy
AND, OR, and INVERTER. One more circuit may be needed: a discriminator to
separate the output into classes. In the following we discuss the concept of basic
circuits of fuzzy AND, OR, and INVERTER.

4.5.1 Fuzzy Inverter

Fuzzy complement is defined by u-(x) = 1 — w,(x). Hence, a circuit that has an
output voltage V,, given by V,, = Vg — V,, may perform as an inverter, with V,;
being a reference voltage and V,, the input voltage. Such a circuit will have a nor-
malized input-output relation given by

Vouw =1 — Vi, V,,, represents pz(x) and V,, represents p,(x).
A circuit that can do this is shown in Figure 4.1.
The circuit is composed of an op-amp with negative feedback resistors.
Assuming an ideal op-amp, the output is
R, + R, R,

'Vm_:( x )& TR, e (g_lz)

= (ﬁ—f) Vet = Vi)

If V_; is selected to be logic 1, then
Vout 5 K(l & Vm)

where k 18 a constant.

4.5.2 Fuzzy OR

Fuzzy ORing is defined by max[u,(x), ug(x)]. Hence, a circuit that has an output
voltage V,, that is equal to the value of the largest of the input voltages will per-
form as an OR circuit:
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Figure 4.1 Fuzzy Logic Inverter.

M= Vi ifVy =Vy

o Vo=V it V= V.

In binary circuits V,, Vg, and V,, may assume one of two values, say OV and
+5V, while in fuzzy circuits V,, V, and V,,, may assume any value in the range
0V to +5V. Diodes were used in binary logic without considering the voltage
needed to turn a diode on (V, = 0.7V). A “diode” with zero voltage (or almost
zero) is needed for fuzzy logic circuits.

Such a “diode” can be produced using the circuit known as precision
rectifier. The circuit uses an operational amplifier to make it sensitive to voltages
as low as V/A; , where V,; = open loop gain of the operational amplifier, which
is in the range of 10°. Such a circuit is shown in Figure 4.2.

Such a circuit may be used to produce an OR circuit as shown in Figure 4.3.

4.5.3 Fuzzy AND
From DeMorgan’s laws we have
A'B=A +B,

and hence an AND can be realized using an inverting precision rectifier (to pro-
duce A + B), followed by an inverter as shown in Figure 4.4.

4.5.4 Discriminator

An n-class discriminator is composed of n comparators. A comparator can be real-
ized using operational amplifiers to compare two voltages (see Figure 4.5). The
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Figure 4.2 Precision rectifier circuit (non-inverting).

Vv Precision
A® Rectifier
s Vout
v Precision
B® Rectifier
R
Figure 4.3 Fuzzy OR circuit
Inverting
Vio—] Precision
Rectifier -
Summing v
Inverter ek
Inverting
Vge— Precision I
Rectifier R
L

Figure 4.4 Concept of fuzzy AND circuit.
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Figure 4.5 Concept of comparator circuit.

reference level of each comparator is set to be the maximum limit of the previous
class. When the input belongs to a particular class, that class comparator and the
other class comparator below the class assume a certain designated value (logic 1). -
With decoding circuit the ith class output is 1 only if the ith class comparator is 1
and the (i + 1)th class comparator is not 1. A discriminator circuit is shown in
Figure 4.6.

EXAMPLE:

A certain process with fuzzy variables x, y and z is recognizable when its describ-
ing function fix, y, z) = «,. Obtain and implement the describing function, if
fix, v, 2) = a, when

Xi= 0 Gt Y=y
andy = o andz=1-—a |

f(x, v, z) may be composed as follows:
There are two terms: 1st x = a;—x
y=1- a3y
2nd y = a;—y
z2=1-— a7
Then
fryz)=xy +yz.

This function can be implemented as shown in Figure 4.7.
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Figure 4.6 Discriminator circuit.
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Figure 4.7 Implementation of f(x, y, z) = «,.

Fuzzy Flip-Flops
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Class 1
(f2ay)

Class 2

(f<ay)

A flip-flop is a circuit that uses logic gates and feedback to produce a bistable
device that can “memorize” single bits of information. It is the basic building
block for registers where binary information is stored. The so-called JK flip-flop
is a common type in binary logic implementations; other flip-flop types may be

produced by modifying a JK flip-flop.

A fuzzy flip-flop can be viewed as an extension of the binary flip-flop using

fuzzy gates instead of binary gates.

Here, we discuss briefly the binary logic JK flip-flop, then extend the con-

cept to fuzzy flip-flop.
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4.6.1 Binary Logic JK Flip-Flop

The operation of a JK flip-flop can be summarized as follows. With every incre-
ment of time (as determined by a train of pulses serving as a “clock”), the output,
Q, may (or may not) change its state, i.e. Q, will be 1 or 0, according to the con-
ditions of the inputs J and K in the following manner:

1.J=K=0 — Q(t + 1) = Q(#) (no change)

2J=1K=0 — Qe+ 1) =1

3.J=0K=1 — Qi+ 1)=0

4. J=1K=1 — Q(t + 1) = Q) (opposite state)
An extended truth table of the binary JK flip-flop is given in Table 4.1. The logic
symbol is given in Figure 4.8.

From the truth table, one can infer the conditions for Q(z + 1) to be 1 as

Q+1)=TKQ+JKQ + JKQ + JKQ

=J+JDHKQ+ (K + K)IQ. (1)

Table 4.1 Truth Table of a Binary-Logic JK Flip-Flop

Inputs Present Output Next Output
J() Kit) Q) Qi+ 1)

0 0] 0 0
0 0 1 1
0 i 0 0
(0] 1 1 0
1 0 0 1
1 0 = 1
1 1 0 1
1 1 1 0

— O

—K 6 e

Inputs Outputs

Figure 4.8 Logic symbol of JK flip-flop.
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In binary logic (J + J) = 1 and (K + K) = 1, and hence

Q(t + 1) =1JQ + KQ. (1)
Equivalently, one could write
Qt+ 1) =JKQ+JKQ+JKQ+JKQ ()
Qt+ 1D =KQUJ+DH+JQ(K + K)
=KQ+1JQ
This leads to
Qt+1)=KQ+1JQ
- ®Q-T0
=K+Q): 0+ Q (2)

In binary logic equations (1) and (2) are equal, and hence implementation using
either equation is possible (see Figure 4.9).

—— ) J L Ja
Q
CK iy
*———9
e l_ Ka &
e T
g —
CK —— Q
9 . ]
—/
K K
K
ST
a .

Figure 4.9 Two equipment implementations of binary JK flip-flop.
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4.6.2 Fuzzy Logic JK Flip-Flop

Equations similar to (1) and (2) may be obtained for fuzzy variables using fuzzy
OR, AND, and complement;

QRC+D={A1-Q}Vv{l-KAQ} A3)
Qe +D={IVQIN{1-K) VI -Q)} (4)
These two equations, contrary to binary logic, are not equivalent in general.
Let us examine equations (3) and (4) more closely under various conditions
of J, K, and Q.
LIJ=K<Q
QRE+D=JANA-QIVIA-DAQ =(1-DAQ
e+ D=AdVON{U-KVIA-Q}=QAd -1J)

2. fI=K=Q;
QRUE+1D=Q+1)=JAN1A-J)
3. fI=K>Q;

QRE+D=Qt+1)=JAN(1-Q
Therefore, to extend the binary JK flip-flop smoothly to fuzzy flip-flop, we write
the following defining equation:

R+ D={IVAONI-KVI-Q) I=K ()

UAA-QIVIO-KAQ) IT=K
Implementing a fuzzy flip-flop circuit characterized by equation (5) will require,
in addition to fuzzy gates, a comparator circuit.

If this is not desired, one can avoid the two-part type of equations by equa-
tion (1) before sirnpliﬁca_tion, ie., equation (1)', since in that original equation we
did not assume that J + J = 1 or K + K = 1, thus it is applicable, without restric-
tion to the fuzzy flip-flop. In other words, it may be more desirable implementing
fuzzy flip-flops using

Qt +1)=JKQ+JKQ +JKQ + JKQ

=J+DKQ+ (K +KJQ
or

Qr +D={A-DVIIVI-KVQV{{KVI-K}\vIvd-Q)

This leads to the implementation shown in Figure 4.10.
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Figure 410 Implementation of a fuzzy flip-flop.

Fuzzy Logic Circuits in Current-Mode

4.7.1 Introduction

In current-mode logic circuits the amplitude and direction of signal current, rather
than amplitude and polarity of signal voltage, are used to represent information.
Integrated injection logic, I°L, is an example of current-mode logic circuits [7-10].
Such circuits are suitable for very large scale integration, VLSI. Circuit configu-
rations are usually simple, resistors are not needed, and the circuit can operate
with low supply voltage and has a low delay-power product.

The circuits we discussed in the previous section are the fuzzy counterpart of
voltage-mode logic circuits (such as transistor-transistor logic, TTL). Yamakawa
[9] proposed a few circuits that can be viewed as the fuzzy counterparts of I’L.
Here we will discuss three basic circuits, namely, fuzzy AND, fuzzy OR, and
fuzzy inverter circuits. But first we will have a few words about the basic building
units of current-mode logic circuits.

4.7.2 Basic Building Units

Transistors with more than one collector (multicollector) are usually used rather
than the ordinary transistors (single-collector transistors). The relative current in
each collector is determined by its relative area. In other words, collectors with
equal areas will have equal currents. Figure 4.11 shows a two-collector transistor
with one collector connected to the base. Assuming a forward current gain of 3
and identical collectors, the output current I, is related to the input current, I, by

L= (T‘%E )Iin-
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Figure 4.11 Two-collector transistors a) npn b) pnp.

If B>> 1, we get a current mirror with
IOth = [in'

Such a circuit is used when changing direction of the signal current.

Figure 4.12 shows a multicollector circuit with identical collectors. The cir-
cuit generates a large number of outputs with the same signal current. Such a cir-
cuit is used for single-to-multifan-out conversion, i.e., to enable a logic gate to
drive more than one load, as shown in Figure 4.13.

A multicollector transistor may be designed to have unequal collector areas.
If the area of the n™ collector is k, times the area of the collector connected to the
base, then

k, I

]Outn = "n %in,
Such a circuit (with k, > 1) may be used as a current amplifier at the output stage
of a current-mode circuit.

Figure 4.14 shows a two-input circuit; one input is applied to the current
mirror 1, the other, /,, is subtracted from I, by wiring (wired-subtraction). The
difference is applied to a diode. The output current /7, is then given by

L= [[A—IB when 7, = [,
0 when I, < [
In other words, the circuit of Figure 4.14 is an implementation of bounded differ-

ence operation (see Section 3.3.5). This circuit is the basic building unit of current-
mode fuzzy logic circuits,

4.7.3 Basic Fuzzy Logic Circuits

In fuzzy logic the information may assume any value in the interval [0, 1].
This is represented by current in the interval [0 A, 10)A] in current-mode logic
circuits.
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(A) B)

Figure 4.12 Multicollector transistors a) npn, b) pnp.

Iz
Single 1z

Fanout
il

Circuit
Figure 4.13 Single-to-multifan-out conversion.

+Ve(=1V)

! l,.—

Iz
goons || b
’ P

Figure 4.14 Bounded difference circuit.

Following we present three basic circuits, the inverter, AND, and OR circuits.

1. Fuzzy Inverter
Fuzzy complement is defined by pA (x) = 1 — ux(x). This operation is
implemented by the circuit shown in Figure 4.15. I is set to logic 1,
which is typically 10 pA.

2. Fuzzy AND
Fuzzy ANDing is defined by min [, (x), pg(x)]. This can be written as
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= () () = pg(x)
Hanl =1 ) D = )

= pp(x) © (up(x) © py(x))
This suggests that a fuzzy AND can be implemented using two bounded-differ-
ence circuits, as shown in Figure 4.16.
3. Fuzzy OR
Fuzzy ORing is defined by max[u,(x), pug(x)]. This can be written as

pa(x) \/ pg(x) = [ Pa() () = pp(x)

Mg(x) Ha(x) < pp(x)
=ug + (u, © Mg)

J ref
il lret "J“A(X)
A
.- I\—L

Figure 4.15 Fuzzy inverter circuit.

#B(X)up(X) © ua(x))

|||——7_

{(1a(x) © ualx))

Figure 4.16 Fuzzy AND circuit.
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+Vg
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wa(x)

Figure 4.17 Fuzzy OR circuit.

This suggests that a fuzzy OR circuit can be implemented using a bounded-differ-
ence circuit and wired summation, as shown in Figure 4.17.

Each of the circuits discussed can drive only one gate. A fan-out converter
(see Figure 4.13) may be used if the circuit is to drive more than one gate. Of
course, other implementations of the logic functions are possible.

Once again, by implementing the basic gates one can implement flip-flops
and hence registers, counters, etc.

4.8 Furry Numbers

It has been suggested by Kéczy and Hirota [5] that the introduction of fuzzy flip-
flops leads to the generation of various sequential circuits such as registers and
counters. Ordinary registers and counters process binary digits (bits); fuzzy regis-
ters and counters process fuzzy binary digits (fits). Binary digits lead to a binary
number that is an array of bits. The binary weights are (from right to left) 2°, 2!,
22,23, etc. Since a bit may assume either 1 or 0 only, a binary number may appear
as 1001, (the subscript 2 denotes the number as binary). Similarly, fuzzy digits
lead to fuzzy binary numbers (furry numbers). In other words, a furry number is
an array of fits with binary weights. Since a fit can assume values in the interval
[0, 1), a furry number may appear as (0.4 1.0 0.0 0.3). Each fit is a fuzzy set of
bits 0 and 1, i.e., the universe of discourse is X = {0, 1}, and the membership
function expresses the degree to which a given fit is equal to 1. For example, the
first fit, 0.3, indicates that the first fit has a degree of 0.3. Remember, in binary
numbers, the degrees are either 1 or 0, and nothing in between.
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We can define N in such a way that it represents, for example, 9,, = 1001,
in a degree of (0.2, 0.3, 0.4, 0.5).

Since binary weights are used in representing furry numbers, multiplication
by 2 and division by 2 may be achieved by shifting to the left and shifting to the
right, respectively. Other operations such as addition and subtraction have yet to
be defined non-equivocally.

Chapter 4 Questions

4-1. If f(x, y) = X + y, determine the conditions that must be satisfied by the fuzzy
variables x and y so that 0.2 < f(x, y) < 0.6.

4-2. If f(x, y) = xy, determine the conditions that must be satisfied by the fuzzy vari-
ables x and y so that 0.3 < f(x, y) < 0.6.

4-3. Iff(x, y, ) = xz + yZ, determine the conditions that must be satisfied by the fuzzy
variables x, y, and z so that 0.2 < f(x, , z) <0.7.

4-5. What are the characteristics of an ideal op-amp?

4-6. Give the circuit diagram and derive an expression for the output voltage for the
following circuits built using op-amps.
a) inverting amplifier
b) non-inverting amplifier

4-7. Derive an expression for the output voltage for the circuit shown.

R
W

R.

MWW— -
_[_ R, "V,

oL +
=V
Rz

4-8. What is the operational difference between a rectifier using diodes and a precision
rectifier using diodes and op-amps.

4-9. Explain the operation of the circuit shown in Figure 4.2.

4-10. Show that a binary circuit, e.g., an AND gate, can be realized using diodes and
resistors. Explain why precision rectifiers, as opposed to diodes, are needed for
fuzzy circuits.
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4-11. Show that the equation

Qi+ =UA1-Q}V{d-KAQ)
becomes Qg(t + 1) = (1 —DAQifJ =K <Q.

4-12. Sketch the surface that shows the dependence of the output Q(z + 1) of a fuzzy

flip-flop on the inputs J and K when:
a)Q=0 b) Q=10

4-13. For the bounded difference circuit shown in Figure 4.14, sketch I vs. Iy for var-

ied values of I,.

4-14. Give a realization of the implication circuit defined by

B _ 1=+ py (e = )
K, = F’x—)y 1 ( ik, < ,u,y)

4-15. Give a realization of the bounded-sum circuit defined by

1 (u+p,=1)

By = f"’x@)'_[“‘x_p ty (e + g, < D

#4-16. Obtain, e.g., using the Internet, a list of available fuzzy 1C’s and their applications.
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Fuzzy Control

Introduction

An operator can control a process adequately without the need of any mathemat-
ical model for the system. For example, you control the process of car driving
without the knowledge of a mathematical model of driving. It may even appear
ridiculous to raise the question whether such a model exists or not. You want to
reach your destination safely and you know how to do that. “How to do that” is
based on the ability to interpret linguistic statements about the system and to rea-
son qualitatively. For example, you see that you are too close to the car ahead of
you, then you slow down a bit. “Too close” and “slow a bit” can be defined in
terms of fuzzy sets. Of course your final action, i.e., the pressure you apply on the
brakes, is very specific and not fuzzy. The value you select depends on your cri-
teria of driving. The situation starts to become entangled if there are more condi-
tions to consider before you act. For example, if you are getting close, you slow a
bit, if it is raining, slow down a lot. The final outcome, again the pressure on the
brakes, comes as a result of selecting a single value from the fuzzy set that results
from considering the two conditions. Obviously, two steps were carried out, one
to infer the possible actions and the other to select one particular action.
Sometimes, during the course of driving you respond with clear definite action to
a clear definite situation. For example, when you see a red traffic light, you stop.

76
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Red and stop can still be described in terms of fuzzy sets—remember the good old
singleton? So you have been driving fuzzy (not fuzzily) all these years.

Fuzzy control was the first application of fuzzy set theory that drew attention
to the practical potential of the theory. Fuzzy controllers have been reported to per-
form better than conventional PID or DDC controllers (see section 5.2 for defini-
tions), especially when noise is taken into account [1,2].

Conventional Control Systems [3—6]

A typical automatic control system is shown in Figure 5.1. The output of the
process under control is measured and converted to an electrical signal that represents
the output, c(¢). This signal is compared to a reference or an input signal, r(f). As
a result, an error signal, e(?), is generated. The error signal actuates the controller
to generate a control action signal, m(?).

To design such a system one needs a mathematical model for the process and
the specifications or the model of the overall system. A mathematical model for
the controller can then be produced and implemented.

In a manually controlled system, similar actions to those depicted in Figure
5.1 take place qualitatively. A driver (same silly example again) “measures” the
distance to the car ahead (the eyes act as a transducer in this case), and compares
the distance to a preset distance (stored in the brain). The difference actuates the
control action, speeding up or slowing down (although the control is usually car-
ried out by the foot pressing the gas or brake pedals, it is still called manual con-
trol!). The wider the experience of the driver, the smoother the driving in general.
Intelligent drivers can infer actions, based on their driving experience, to handle
situations they never faced before.

r(t e(t m(f
—(): ) Controller ——L-— Process c(t)
c(t)
Measurement

Figure 5.1 A typical closed-loop feedback system. r(t): reference (or setpoint),
e(1): error signal, m(?): control action, ¢(#): control variable.
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In digital systems, the proportional action becomes

P(r) = Ke(t,), (5.3)
where 1, is the sampling moment and k = 0, 1, 2, ....

The integral action becomes

I(t,) = K;h[e(0) + e(h) + e(2h) + ...], (5.6)
where the integration is replaced by the summation of successive rectangles of

width A and length e *(z).
The derivative action is given by

e (fk) T e(fk = 1)}

D) = K, 7 @7
When all the above actions are combined, the overall expression becomes
m(t,) = Kpe(t,) + Khle(0) + e(h) + e(2h) + ....]
K
+ e (ry) — et _ )] (5.8)

PI control is adequate for processes where the dynamics are essentially first
order, i.e., the process can be described by a first-order differential equation; e.g.,
level control in single tanks. PID control is adequate for processes where the
dynamics are essentially second-order, e.g., motion with friction. For more com-
plicated systems, a simple PID control may not be sufficient.

Fuzzy Logic Control Systems [7-14]

Fuzzy logic control (FLC) describes the algorithm for process control as a fuzzy
relation between information on the condition of the process to be controlled and
the control action. It is thus distinguished from the conventional control algo-
rithms, since information (linguistic or fuzzy model) about the system rather than
a mathematical model is what the designer needs. It is also different from expert
systems in the sense that the rules of FLC systems are not extracted from the
human expert through the system but formulated explicitly by the FLC designer
(there are, of course, fuzzy expert systems).

A possible fuzzy control system is shown in Figure 5.4. There is an aspect of
similarity between the system shown and any other control system—a control
action is produced based on measurement of the output. In conventional systems,
control action is reached through an algorithm based on multiplication by a constant,
taking a derivative, integration, or a combination of all three (simple addition in PID
control and some more entangled combination in more complicated cases).

The essence of fuzzy control algorithms is a conditional statement between
a fuzzy input variable A and a fuzzy output variable B. This is expressed by a lin-
guistic implication statement such as
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0 O Process c(t)

Decesion-
making logic

l— Rule base J

Figure 5.4 A possible fuzzy logic control system.

Measurement

Defuzzification

A—B (condition A implies condition B),

which may be written as

IF A THEN B.
There is an equivalency between this expression and the relation obtained by
Cartesian multiplication, i.e.

R = A X B =IF A THEN B.

A fuzzy variable is expressed through a fuzzy set, which in turn is defined by

a membership function p. The fuzzy variable may be continuous or discrete. A
continuous variable can be quantized and expressed as if it were discrete.

EXAMPLE:

Let the universe of discourse be all the integer numbers in the range 0 to 10.
Then we can define the expressions small, medium, and large by the fuzzy sets

A, B, and C as

A = small = 1/0 + 0.8/1 + 0.5/2 + 0.2/3

B = medium = 0.5/4 + 1/5 + 0.6/6

C = large = 0.2/7 + 0.5/8 + 0.7/9 + 1/10.
These discrete fuzzy variables may be tabulated as shown in the following table
(membership matrix table).

Table 5.1 Membership Matrix

0 1 2 3 4 5 6 7 8 9 10
small 1 0.8 05 . 02 -0 0 0 0 0 0 0
medium 0 0 0 0 0.5 1 06 O 0 0 0
large 0 0 0 0 0 0 0 0.2 05 07 1
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EXAMPLE:

Let the universe of discourse be all the real numbers in the range 0 to 10.
The expressions small, medium, and large can be defined through graphical
representation of the membership functions as shown in Figure 5.5.

Operations such as DIL, CON, etc. may then be applied to large, medium,
and small to express very large, more-or-less large, etc. Thus, even if the continu-
ous functions appear to be linear (measured or assumed), they will not stay linear
after such operations. The degree of overlap will also change.

A fuzzy conditional statement may be multicomponent, such as

IF A THEN B THEN C,

which is equivalentto R = A X B X C.

A combination of several conditional statements is usually required for
adequate control in a given situation. When an actual input is given, the output is
calculated by a defuzzification process.

Since it is impractical to have an explicit rule for every conceivable situation,
a composition rule of inference may be used to produce a control rule. For exam-
ple, assume the explicit control rule is “if A then B.” Then it may be inferred that
if the condition A’ occurs, it implies an outcome B’ i.e., “if A’ then B’ where
B’ is inferred from a composition rule of inference such as

B' =A"°R=A"9(A XB)
The designer may, for simplicity, decide that for a given input, the control

algorithm checks if there exists a corresponding rule. If no rule exists, then the rule
in the immediate neighborhood, within a predetermined distance, will be used.

w(x)

1.0

0.0
0

Figure 5.5 Graphical representation of the expressions small, medium, and large in a
universe of discourse defined as all the real numbers in the range 0 to 10. (Triangular
graphs are used for illustration only, graphs of other shapes may be used.)
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5.3.1 Simple Design

In order to design a fuzzy logic control system one has to be able to describe the
operation linguistically. In other words, one has to

1. identify the inputs and outputs using linguistic variables;
2. assign membership functions to the variables;

3. build a rule base;

4. generate a crisp control action (defuzzification).

The linguistic variables, membership functions, and the rule base stem from
the experience of a skilled operator. A large rule base usually leads to a smooth
operation; however, composition rules of inference can be used to keep the rule
base reasonably sized.

The rule base in a fuzzy system takes the form IF ... AND ... OR ..., THEN ..,
with the operations AND, OR, etc. being, of course, fuzzy logic operations. In a
non-fuzzy system that has a rule base control, one rule fires at a time. In fuzzy sys-
tems, more than one rule may fire at the same time, but with varied strengths. This
mixture of rules firing with varied strengths leads to a crisp control action through
the process of defuzzification.

The process of defuzzification in fuzzy logic control systems is not stan-
dardized. There are several methods in use such as

« min-max operation (AND-OR operation);
= center of gravity method;
= using output singleton sets.

These ideas are best illustrated by a numerical example.

EXAMPLE:

Consider the case of a subway train approaching or leaving a station.

The inputs are the distance from the station and the speed of the train. (More
inputs, such as an angle of elevation, radius of curvature, number of cars, etc., can
be considered for a better design). The output is the amount of brakes power used.

The membership functions for distance, speed, and brakes are shown in
Figure 5.6. They may not be very realistic, but they will do to illustrate the concepts.

The rule base for this example is composed of the following rules

1. If speed is very_slow and distance very_close, then brakes power is
very_light.

2. If speed is slow and distance very_close, then brakes power is heavy.

3. If speed is fast and distance very_close, then brakes power is heavy.

4. If speed is very_fast and distance very_close, then brakes power is
very_heavy.

5. If speed is very_slow and distance is close, then the brakes power is
light.

6. If speed is slow and distance is close, then brakes power is light.
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Figure 5.6 Definition of membership functions for a) distance, b) speed, c) brakes.
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7. If speed is fast and distance is close, then brakes power is heavy.
8. If speed is very_fast and distance is close, then brakes power is heavy.
9. If speed is very_slow and distance is far, then brakes power is light.

10. If speed is slow and distance is far, then brakes power is very_light.

11. If speed is fast and distance is far, then brakes power is light.

12. If speed is very_fast and distance is far, then brakes power is heavy.

13. If speed is very_slow and distance is very_far, then brakes power is

very_light.

14. If speed is slow and distance is very_far, then brakes pressure is
very_light.

15. If speed is fast and distance is very_far, then brakes power is light.

16. If speed is very_fast and distance is very_far, then brakes power is light.

These rules are summarized in Table 5.2.

Now, let us consider the control action if the distance is 100 m and the speed
is 24.6 km/h.
A speed of 24.6 km/h has a membership of 0.58 in Slow and 0.21 in Fast, i.e.,

Hjow = 0.58
M = 0.21
A distance of 100 m has a membership of 0.29 in Close and 0.88 in Far, i.e.,
”close =029
U, = 0.88
Accordingly, the rules that will fire are
= Rule #6 (slow/close) with a strength of 0.58 AND 0.29 = 0.29
= Rule #7 (fast/close) with a strength of 0.21 AND 0.29 = 0.21

Table 5.2 Input matrix with action. The shaded area gives the action (power of the brakes).

D% Very_Slow Slow | Fast Very_Fast
Very_Close b ka0 P

Close

Far

Very_Far
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= Rule #10 (slow/far) with a strength of 0.58 AND 0.88 = 0.58
= Rule #11 (fast/far) with a strength of 0.21 AND 0.88 = (.21

If using min-max defuzzification, an OR operation follows, leading to
0.29 OR 0.21 OR 0.58 OR 0.21 = 0.58

The crisp control action will be to apply 58% of the maximum braking power.

If using center-of-gravity defuzzification, the crisp output is determined by
the weighted sum of the centroids of the membership functions. The centroid is
the center of the output membership function adjusted to the degree of rule firing.
The triangular membership functions become trapezoidal, as shown in Figure 5.7.

One can see from Figure 5.7 that the crisp control action will be to apply
much less than 58% of the braking power.

Instead of defining the output membership functions as shown in Figure
5.6¢, singleton sets could have been used. Figure 5.8 shows an example of using
singleton sets to define the output control actions.

The crisp control action is determined by the weighted average defined by:

Z (rule strength), - (action)

Crisp action = .
> (rule strength),

This leads to

Brak _(0.29)(5) + (0.21)(70) + (0.58)(5) + (0.21)(30)
Sa i 0.29 + 0.21 + 0.58 + 0.21
= 19.65% of maximum braking power.

In Figure 5.9 are the results of a simulation carried out using Fuzzy Logic
Designer from Byte Dynamics Inc. The results of simulation using six and three
rules, respectively, instead of sixteen are shown in Figure 5.10. The control sur-
face becomes progressively less smooth as the number of rules is decreased.

Fuzzy Logic Control vs. PID Control

PID control is well-established in classical control systems. It is often used as a
benchmark against which other control systems are evaluated. One can design a PID
Controller using fuzzy logic approach, but why would one be interested in doing that?

A possible reason for the interest in producing a PID-like system using fuzzy
logic could have been to gain confidence in a fuzzy logic approach. Fuzzy logic,
however, has passed this stage; we know it works well. Further, we know that, in
general, a system that can be described mathematically can be described linguis-
tically, though the opposite is not always true.
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One may still have the desire to describe the PD, PI, or PID algorithms lin-
guistically to enhance the performance of an existing system. One can use rules
for PD such as

= IF error is positive AND change in error is almost zero, THEN the control
action is positive. '

= IF error is negative AND change in error is almost zero, THEN the control
action is positive.

For PID you can use rules of the type

= IF error is almost zero AND the change in error is positive AND the sum
of errors is positive, then the control action is positive.

The AL220 Fuzzy Controller (see Appendix B) was shown to be able to create an
approximation of a PID controller [15]. The ease of modification it allows can be
used to improve performance in specific applications. For example, it makes the
incorporation of extra sensors in the system easy; just add inputs from sensors,
define the membership function for these inputs, and add fuzzy variables to the
fuzzy rules. Since fuzzy logic can accommodate non-linear sensors, the AL220
can be programmed to accommodate low-cost non-linear sensors. Adding the fact
that the AL220 chip is inexpensive, PID controllers can be implemented at low
cost using fuzzy logic techniques.

Examples of Industrial Applications of FLC

One of the early applications of fuzzy logic control occurred in 1978 in Denmark,
where a fuzzy logic controller was used on a cement kiln [3]. The system was then
marketed by FL. Smith & Co. of Copenhagen in 1980 [14]. Since then, numerous
fuzzy logic control systems have been reported in a wide range of applications that
include industrial processes, transportation systems, robotics, and consumer prod-
ucts. In the following sections we give a bird’s eye view of some classical exam-
ples of industrial applications of Fuzzy Logic Control (FLC).

A. Cement kiln [15]

A cement kiln is a rotating chamber in which ground limestone and clay react with
each other at temperatures of 1000-1400°C. The objective of the control operator
is to maximize the output product, minimize fuel consumption, and keep the
machinery running within specified limits.

The fuzzy logic controller reported by Holmbald and @stergaard [16] was
realized with a minicomputer. The fuzzy control algorithm was based on the oper-
ators’ experience and field tests. Examples of fuzzy logic control rules are
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« If TC is ZE and FL is LO, then FA is MN
« If TC is ZE and FL is OK, then FA is ZE
« If TC is SN and FL is LO, then FA is SP

where TC = kiln drive torque change, FL = free lime, FA = fuel flow adjustment,
7E = zero, LO = low, OK = okay, SN = small negative, and SP = small positive.
The fuzzy variables LO, HI, etc. were defined in the algorithm. The extent of
combination of each control rule is judged based on the actual conditions of the kiln.
The FLC was reported to reduce fuel consumption slightly compared to the
operator controlled system.

B. Heat exchanger process [17]

The core of a heat exchanger is two hydraulic systems: hot and cold water circuits.
Water in a reservoir is heated electrically. It is then pumped into a pipeline to the
neighborhood of a cold water pipe. The cold water gets heated and the hot water
loses heat. The hot water then goes back to the reservoir for reheating.

The control problem reported was to adjust the hot water flow rate, FH, and
the reservoir heating power, W, so that the cold water outlet temperature, TCO,
and hot water inlet temperature, HI, take on setpoint values TCOS and THIS,
respectively. Two 7 X 9 decision tables were needed. Using an IBM/1800 com-
puter, 7 hours of computing time were used.

As an example of control rules, one of the rules for controlling the cold water
outlet TCO states that

« If TCOE is LP or MP and THIE is NOT LP or MP, then FH is MP where
LP = large positive, MP = medium positive.

The experimental results showed characteristics comparable to those of a PI
controller.

C. Boiler and steam engine [18, 19]

The steam engine speed was controlled by adjusting the throttle opening at the
input of the engine cylinder, while the boiler pressure was controlled by the heat
input to the boiler.
The operating experience and technical knowledge of the process was used
to specify the control rules. The algorithm was implemented on a PDP8 computer.
As an example of control rules,

« If PE = NB then if CPE = NOT (NB or NM) then HC = PB
« If PE = (NB or NM) then if CPE = NS then HC = PM
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‘where PE = pressure error, CPE = change in pressure error, HC = heat input
change, NB = negative big, NM = negative medium, PB = positive big, NS =
negative small, PM = positive medium.

When FLC was compared with DDC, the FLC system was found to be much
less sensitive to process parameter changes.

D. Water purification plant [20]

In a water purification plant, raw water is purified by injecting chemicals at rates
related to water quality. The feed rate of chemicals is judged by a skilled operator.
Aluminum sulfate or PAC (polymerized aluminum chloride) is used as a coagu-
lant. Aluminum sulfate is less expensive than PAC but is not as effective in low
temperature water. An alkaline agent, such as lime or caustic soda, is used for pH
adjustment. A chlorine agent is used for sterilization. All chemical agents, except
the coagulant agent are usually fed at a fixed rate that is proportional to the flow
of raw water. The reaction of the coagulant with water impurities is a compli-
cated process to model; no universally accepted method of a feed rate exists.

Yagishita et al. [20] structured a system based on fuzzy logic so that the feed
rate of the coagulant can be judged automatically even by an unskilled operator.
Ten control rules were used. As an example,

» [f TUUP = MM, then DDOS = PS
« If TUUP = ML, then DDOS = PM

where TUUP = grade of water, DDOS = amount of compensation dose, MM =
medium, PS = positive small, ML = medium large, and PM = positive medium.
The fuzzy variables MM, PS, etc., were assumed to have a normal distribu-
tion. A particular set was defined by specifying the average value and the standard
deviation.
The system was used successfully in a water purification plant in Akita City,
Japan in 1983.

E. Refuse incineration plant [21]

In a refuse incineration plant, a refuse supply feeder takes the refuse to a stoker in
which refuse if burnt. The major purposes of the combustion control are:

1. providing adequate supply of refuse (oversupply extinguishes the flame,
insuftficient supply leads to poor combustion)
2. keeping the evaporation rate and furnace temperature at their specified values.

The fuzzy control for the plant in Shizuoka City reported by Ono et al. [21]
consists of fuzzy sensors, fuzzy controllers, and conventional combustion control
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(ACC). A total of 45 control rules based on the knowledge and experience of the
operator were incorporated. For example,

« If the evaporation rate is in the target zone, then leave it to automatic oper-
ation by ACC.

« If the evaporation rate is low and the refuse layer thickness is high, then
increase amount of combustion air and decrease feeder speed. '

F. Arc welding robot [22]

A hazardous environment surrounds the arc-welding process. Very bright welding
sparks, high temperature, and toxic fumes are associated with the process. It also
takes a long time to train a human welder. Thus, the process is a suitable field of
application for a robot.

The system has two inputs and two outputs representing the composition of
a vertical and a horizontal control system. The FLC was designed for the two sys-
tems independently. Eight control rules were used. The membership functions of
the fuzzy variables P,; and Ny, were defined by empirical formulae.

The experimental data indicated that using FLC, the system produced less
vibration of tracking locus compared to the case where PI controller was used.

Stability

Traditionally, stability analysis is a fundamental aspect in determining the relia-
bility of a control system. Conventional stability analysis is based on-the avail-
ability of a mathematical model of the system to be controlled. Difficulty arises in
fuzzy control systems where the major advantage is in devising a control system
without the need for a mathematical model.

Mamdani [23] voiced the opinion that a fuzzy controller can be analyzed
qualitatively to assure that a runaway instability does not occur. Changes to the
control system structure to improve performance can be introduced by monitoring
the system running open-loop.

For example, King and Mamdani [19] reported on temperature control of
stirred tanks. Their initial results showed a tendency to oscillate around the set-
point. Simulation of the process was carried out to determine the cause of the
instability. Time delay was observed to be a primary cause of the instability. An
effective way to solve the problem was to modify the universe of discourse by
changing the quantization levels, and by adjusting the overall loop gain. The
results were confirmed to be satisfactory on the real process.

Mamdani [23] suggested that the discussion on stability is irrelevant if it
implies that no attempt be made to control difficult processes unless a rigorous
theory can be found to design fuzzy logic controllers. This was accepted implicitly
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by numerous reports in the literature of fuzzy logic systems design. The concern
about a systematic method of studying the stability, however, existed since the
early stages of fuzzy logic control applications. Nevertheless, the literature has
much work reporting on applications but much less reporting on stability studies
(see for example references [24—38]).

If we have a mathematical model, we expect a mathematical analysis of sta-
bility. But if we have a linguistic model, why should we expect mathematical
analysis of stability? Would it be possible to have a linguistic stability criterion?
Stability can be defined linguistically of course. Probably the closest analysis to
such an idea is the one by Kiszka et al. [28].

The basic equation of a simple fuzzy dynamic system has the form

Xoor=XoUsR  k=0,1,2,3,..

where X, and X, , , are the fuzzy sets of the states at kth and (k — 1)th time
instants, respectively, U, is the input at the kth instant, and R is the fuzzy relation
between the input and output.

A free or unforced dynamic system is realized by setting the input to zero. In
this case, we have

2 i e L &

where P = U, R for U, = zeroforall k, k=0, 1, 2, ...
A state of X of a free dynamic system is an equilibrium state if X, ., = X,
for all £, 1.e.

X =Xap

Various authors [38-40] put forward algorithms to calculate the greatest
equilibrium state. Kiszka et al. [28] suggested an algorithm based on the energy of
the system. A dynamic system is stable if its total energy is minimal and constant.
The system is unstable if its energy increases with time, and oscillatory if its
energy fluctuates periodically. They proposed an intuitive measure of energy of a
fuzzy relation. It relies on the most salient physical characteristics of the fuzzy
relation, such as the position in the support set, maxima of membership function,
etc. They defined the energy of a fuzzy relation P as

n m

22w ), (50 )

[ =

E(F) =

where w(x;, y;) is the function responsible for the position of the fuzzy relation in
the universe of discourse, f{u,(x;, ¥,)) is the function responsible for the shape,
spread, etc., of the fuzzy relation, and m and n are the cardinalities.

Further, they defined the incremental rate of energy change or the relational
characteristic energy function as

AE(E i) = E(PY)y = E(P'~ )

where P = Po Po P... Pis the i-times max-min composition of the fuzzy relation P,
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The energistic stability algorithm ESA, states the following:
If AE(P, i) = 0 for i — oo, then the system is stable.

If AE(P, i) > 0 for i — <o, then the system is unstable.

If [AE(P, i)| = |AE(P,i + 7)
frequency 1/7.

, for i — e, then the system oscillates with

In summary, to investigate the stability of a fuzzy dynamic system, the lin-
guistic algorithm is translated into a look-up table or a relation P. The system is
stable if the energy of the relation P is minimal and constant.

In the following we give some simple examples to illustrate the type of cal-
culations done by ESA as given by Kiszka et al. [28].

EXAMPLE:

Let the fuzzy relation P be given by
L (0. 19505
o [0.3 0.2 ] ‘
and the universe of discourse X = Y = [1, 2]. Determine whether the system is sta-
ble, oscillating, or unstable.
To determine the stability of the system we start by calculating several con-

secutive values of E(P"), where P' = P P P, . .o P. The max min composition
rule discussed in section 3.4.2 gives

[a“ a12] . [bu bm} _ [Cn Cu}

dy ayp| [by by Cy Cx

where,
¢,; = max {min (a,;, b;;), min (a,,, b;,)}
¢, = max {min (a,, b;,), min (a,,, b,,)}
Cy = max {min (ay, by,), min (a;, by;)}
Cy = max {min (a,,, by,), min (a,,, b,,)}

Since, P> = P o P, then

i fopemsfoi-05] - ey e
P = o =
05°0:2] 10.3 0.2 Coi Kos

¢,; = max {min (0.1, 0.1), min (0.5, 0.3)}

max {0.1,03} = 03

¢, = max {min (0.1, 0.5), min (0.5, 0.2)}
=max {0.1,02} = 0.2

C,; = max {min (0.3, 0.1), min (0.2, 0.3)}
= max {0.1,0.2} = 0.2
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C,, = max {min (0.3, 0.5), min (0.2, 0.2)}
= max {0.3,0.2} = 03

Thus,
p2 — (03 02
0.2 03
Similar procedures lead to
P3 - PZ o P § e _ -
103 02t 100 0.5 [ |0.2703
02 03] [03 02] |03 02]
Pli=d o P ot ds ; .
Q203 01405 | {0:300:2
03 02] [03 02] |02 03]

From the definition of the energy of the fuzzy relation P

BP) = i 2 2w () - flbty (50 3)
we get
E(P) = 5o |(1 X 1) X 0.1 + (1 X 2) X 0.5 + (2 X 1) X 0.3
+@2x2)x02|
=2 @5)

Similar calculations lead to
E(P) = 1 23), EP) =  2.2), B(PY) = ; 2.3), and E(P) = %2

Thus, the fuzzy system is oscillating.

EXAMPLE:

Let
P= [g; ?3] and the universe of discourse X = Y = [1, 2].
Then,
e [0.1 0.3] : [0.1 0.3] 5 [0.3 0.3]
0.7 1.0 0.7 1.0 0.7 110

P3:[0.3 0.3]0{0.1 0.3]=[o.3 0.3]
0.7 1.0] 07 1.0] |07 1.0
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Electronic Neural Networks

Introduction

Through the attempts to understand the human computational power two fields
emerged: fuzzy logic and electronic (or artificial) neural networks. The two fields
were developed independently. Merging the two fields can get us closer to under-
standing the human computational power, or at least provide us with very power-
ful computational capabilities.

As discussed earlier, fuzzy logic started with the goal of using approximate
human reasoning in knowledge-based systems. Fuzzy logic provides inference
mechanisms under cognitive uncertainty [1]. Neural networks, on the other hand,
may owe their start to the quest for mimicking the biological sensory systems in
pattern recognition. Elementary neural networks for detecting simple forms were
proposed by early researchers. It was then immediately realized that the perfor-
mance of the biological systems is very difficult to mimic. It was also realized that
the biological sensory systems depend on the cognitive processes of the brain.

Although pattern recognition is still at the heart of neural networks applica-
tions, they have been proven useful in many other applications, such as optimiza-
tion computations and decision making. Neural networks have the advantage of
learning, adaptation, and fault tolerance.

Several authors (see for example references 1-25) have reported on tech-
niques and approaches of merging the two fields and the emerging applications.

102
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Two possible things that one can imagine achieving are enabling neural net-
works to deal with cognitive uncertainty and generating fuzzy rules using neural
networks.

The objective of this chapter is to introduce concepts of neural networks to
pave the way for understanding fuzzy neural networks. We will briefly discuss the
biological neural system—the system electronic neural networks are trying to
mimic. Then we will introduce several ideas of electronic neural networks and dis-
cuss in simple terms representative examples of neural network models.

Before going any further, we should emphasize that the commonly used
expression “mimic the biological system” is an exaggeration; electronic neural
networks, at best, are nothing more than crude approximations of the biological
system. Probably you have heard the quip “if our brains were simple to under-
stand, we would be too simple to understand them.”

The Biological System

We present here a simplified picture of the neuron, the basic building unit of the
brain and related structures. Then we discuss the learning process.

6.2.1 The Neuron

A neuron is a living cell. Contrary to other cells, it does not duplicate itself. It can,
however, develop more connections with other neurons as a person learns more.
The brain is estimated to have billions of neurons; each neuron has thousands of
connections to other neurons [26].

The basic anatomy of a biological neuron is shown in Figure 6.1. It is basi-
cally composed of the cell body (soma), dendrites, axon, and terminal buttons
(synaptic terminals). The dendrites are branch-like structures that pick up input
signals to the soma. The soma performs the central functions of the cell. The axon
carries the output signal; it is terminated with the so-called terminal buttons.

Almost half of the brain weight is made of another cell type known as neuroglia
(nerve glue) [27]. There are two main types of glial cells in the central nervous system:
the astrocytes and the oligodendrocytes. The astrocytes have a star-like appearance,
with several long arms radiating out of a central cell body. The oligodendrocytes also
have a central body, but with shorter and more numerous arms than the astrocytes. The
oligodendrocytes form the myelin sheath around axons in the central nervous system.
In the peripheral nervous system another type of glial cell, the Schwann cell, is respon-
sible for forming the myelin sheath [28]. The myelin sheath surrounds many axons. It
reduces the capacitance between the cell membrane (cytoplasm) and the outside fluid.
This leads to an increase in the velocity of signal propagation along the axon (it is about
120 m/s) [29]. The myelin sheath is segmented; each segment is a few millimeters
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Figure 6.1 A schematic of the biological neuron.

in length. The gaps between the segments are known as the nodes of Ranvier. These
nodes act as repeater sites to restore the propagating signal [29]. Other roles for glia
have been speculated; for example, it is thought [28] that the glia might provide struc-
tural support for neurons, segregate groups of neurons, supply metabolic components
to the neurons, and play a role in information handling and memory storage.

The point at which two or more neurons interconnect is known as, the
synapse. The two neurons are connected through the so-called synaptic cleft. In
other words, the synaptic cleft is the area between the terminal buttons of one neu-
ron and the dendritic ends of another. The signal is transmitted across by chemi-
cals called neurotransmitters. The signal propagates by these chemicals at a rela-
tively low velocity (about 2 mm/min.). The chemicals can be modified to increase
or decrease the velocity of signal propagation. Such modification occurs by a sig-
nal from the brain, for example, in the face of danger, or due to drugs. If this break
in the transmission circuit did not exist, one would be alerted with a muscle twitch
at every step and every touch.
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The operation of the neurons can be summarized in simple terms as follows.
The dendrites receive synaptic inputs from other neurons. The input signal current
builds up an electric charge across the cell-membrane capacitance. When a certain
threshold is reached, a nerve pulse, known as the action potential, is generated.
The action potential propagates along the axon to other neurons (the term poten-
tial, rather than voltage, is commonly used by neurophysiologists).

At rest, a live neuron has a potential across it, the so-called rest potential. The
existence of such voltage can be explained as follows. The fluid outside is basi-
cally a sodium chloride (NaCl) solution (40% of blood volume is NaCl). The
inside fluid is rich in potassium (K). A metabolically driven pump in the cell
membrane keeps the inside fluid rich in potassium and depleted of sodium, and the
reverse for the outer fluid. The gradient of charged particles leads to a voltage dif-
ference developed across the membrane. That voltage, V,, is given by

_ KT . Ny : (6.1)

Lo (Nex )
where N,, and N, are the ionic concentrations in the internal and external fluids,
respectively. K; is the Boltzmann constant, T'is the absolute temperature, g is the
electronic charge, and V, is the reverse voltage developed.

Each ion gradient will produce a corresponding voltage. The overall picture
can be visualized by the circuit shown in Figure 6.2.

The rest potential, V,, across the membrane is the voltage that appears when
the net current flow is zero. This occurs when

(Vg = Vo) (Vi = Vo) i Vo — Vo)_ (6.2)

== +
RK RNa RC]

The chloride current was found to be very small [30], and hence we can write

- ViRna + Viaflx (6.3)
0 Ry + Ry,

The value of the rest potential varies from one experiment to another; it has
a value of around 90 m V.

The capacitance of the membrane is about 1 wF/cm?, and since C = €,€A/¢,
€, is about 8.5. The value of RC (the time constant) is about 4 ms, indicating a
resistance of about 0.4235 Q)/cm?, or a resistivity of about 5.647 X 10°Q - cm[31].

The previous analysis shows that a neuron at rest is polarized to a negative
potential and that the membrane under these conditions is a good insulator. Now,
applying an excitory signal depolarizes the membrane (decreases the negative
voltage). Applying an inhibitory signal hyperpolarizes the membrane (increases its
negative voltage).

A biological network is usually modeled by a network that has nodes (or pro-
cessing units) and input and output links. The processing units simulate the neu-
rons (or actually the soma) and the links simulate the synapses. Weights are
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Figure 6.2 Voltage across cell membrane at rest. Via Vei» Vi represent the reverse
potential, V,, of sodium, chlorine, and potassium, respectively. Ry,, R, and Ry repre-
sent the corresponding resistance of the membrane. C,, is the membrane capacitance. Vo
is the rest potential.

assigned to the input links to simulate the action of the neurotransmitters. Such
modeling can be done with software or hardware (or a combination). An algorithm
is used to adjust the weights of the input links so that the neurons produce the
desired output. Such an algorithm is called a learning algorithm.

Learning

Learning may be defined as a relatively permanent change in behavior that is
caused by practice or experience [32)]. Learning can usually be estimated by mea-
suring performance; however, learning may also occur without any immediate
measurable change in behavior. It may behave as a catalyst for measurable learn-
ing. The relatively permanent change in behavior is also called self-organization,
Or adaptation in some cases. Learning is described as relatively permanent, rather
than absolutely permanent, to allow for forgetting. It is also defined as due to train-
ing to exclude effects due to damage to the neurons (a dead neuron has a perma-
nent change in behavior!).

Learning in biological systems is thought to occur when the effective cou-
pling between the neurons is modified. Similarly, learning in artificial neural net-
works is thought to occur when the weight of the input links are modified. There
are, of course, good learning and bad learning, i.e., you may learn how to do things
right or you may learn to do things wrong. Usually we are after good learning. We
will see later that the central idea of learning in neural networks is the associative
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memory: store a set of patterns in such a way that when presented with a new pat-
tern, the network can associate the new pattern with one of the stored patterns.

There are two modes of learning: supervised and unsupervised. Un-
supervised learning is very common in biological systems. We are continuously
receiving information without any obvious relationships or any form of instruc-
tions. The question “what use can be made of this flood of information?” has been
addressed by several authors (for a review see reference 34). This mode of learn-
ing is very important for electronic neural networks, since in many practical appli-
cations the training data are not available.

In supervised learning mode, the desired output is known and the system is
trained to produce it; it is learning with a teacher. In electronic neural networks, a
training set is used. The training set is composed of examples from which the net-
work can learn. Each example consists of a pair, an input and the corresponding
output data.

There are several learning laws. Some of these follow:

‘Hebbian learning

Hebbian learning is the first and probably the best known learning law. It states
“when an axon of cell A is near enough to fore (excite) cell B and repeatedly takes
part in firing it, some growth process or metabolic change takes place in one or
both cells such that A’s efficiency, as one of the cells firing B, is increased” [35].
This law is powerful yet simple; however, the law as stated needs modifications to
take into account some practical aspects, such as the following:

= Biological systems forget as well as learn.
» There are excitory and inhibitory inputs.
= A limit has to exist on the increase of a reinforced input.

Grossberg (Neo-hebbian) learning

In this model biological forgetting is incorporated into the Hebbian learning law
(reference 36 is a collection of research papers focusing on this area).

Kohonen'’s learning

In Kohonen’s model the neurons compete with each other in learning. The neuron
with largest output wins; it and its neighbor are allowed to adjust the weights of
their inputs (allowed to learn). The competing neurons are suppressed. The size of
the neighborhood becomes smaller as the training time increases (reference 38 is
devoted to this topic).
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Back-propagation learning

The back-propagation model is a commonly used learning algorithm for elec-
tronic neural networks. Nevertheless, there is no evidence to suggest that this
method occurs in biological systems. This is another example where we are inter-
ested in a model as long as it works, regardless of its relation to reality.

The weights are set randomly at the beginning. Learning takes place in two
phases: forward and backward phases. In the forward phase, an input is applied
and the output is observed. The error between the actual output and the output
desired is calculated. The second phase starts by propagating the error backward
to adjust the weights. When the two phases are complete, a new input from the
training set is applied, and so on. A long training time is usually required, since
hundreds or even thousands of iterations may be needed. A collection of mono-
graphs on this topic is given in reference 39. The concept is discussed in more
detail in section 6.4.3. ‘

Fuzzy learning

In various conventional neural networks, a training set is composed of numerical
data to train the network. Fuzzy learning utilizes expert knowledge represented by
if-then rules to train the network. This takes neural networks a step closer to the
biological system. The topic is discussed further in chapter 7.

Several other techniques for training neural networks are used. Drive-
reinorcement learning, stochastic learning, simulated annealing, counter back
propagation, and adaptive resonance are examples. In section 6.4 we discuss
various learning models in some detail.

Explanation

A network with perfect training inspires complete confidence in its decision. To
approach perfect training, a neural network needs a large training set, a very power-
ful learning technique, and enough time to complete the training. Practical networks,
however, have less than perfect training. Doubts may arise about the validity of
their decisions. Explanation becomes important for the user to accept the results
presented by the network.

Intelligent systems (including most people) can explain the decision they
make. They can, for example, provide the intermediate steps of their reasoning
process. Although explanation supplied by a machine may be elementary and lim-
ited, it can, nevertheless, be useful for the user.

Various authors have reported on the explanation that neural networks can
provide. A review of research in that area is given in reference 40.
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Neural Networks Models

Electronic neural networks are inspired by the biological neural system. Not all the
models, however, have biological justifications. The major function of a neural
network is classification of some sort. This leads to applications in pattern recog-
nition (visual and auditory), communications, and control.

To learn about the models, it may be tempting to start by classifying the
models themselves. Several possible classification schemes exist. It depends on
who is doing the classification and what point of view is to be conveyed. For
example, we can say there are two major classes: biologically-justified and not
biologically-justified, with subclasses in each case. We can also say that the two
major classes are supervised and unsupervised networks, with the subclasses feed-
forward and feedback in each case. The same classification can be presented dif-
ferently by considering the major classes to be the feedforward and feedback, and
the subclasses to be the supervised and unsupervised. Of course, the classification
can be based on the inputs—binary or continuous-valued—or even on the poten-
tial applications.

Here we present you with several models; it will be up to you to re-classify
them to carry on generalization and adaptation to your needs.

6.4.1 The Perceptron

A simple model of the biological neuron is shown in Figure 6.3. It can be built
using software or VLSI technology.

Figure 6.3 A simple model of the neuron (McCulloch-Pitts model). The inputs are x,,
X5, ... X, The output is y. The unit sums the inputs and has a threshold function.
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The synaptic inputs are represented by Xis Xy ooy Xy, With weights wy, w,, ..
w, assigned to each input. The axon output is represented by y. The processing
unit represents the neuron (or actually the soma). It sums the weighted inputs. If
the sum (minus any offset) exceeds a certain threshold, y is set to one (the neuron
fires); otherwise, it is zero. This action can be described by

y :f[E (wx, — 9)] (64)

I=u]

where @ is the neuron’s off-set or bias, and f1s an activation function, which is
usually monotonically increasing with upper and lower bounds, as in the case of
a step function.

The model neurons, or processing units, connected in a simple fashion, as
shown for example in Figure 6.4, form the perceptron.

EXAMPLE: Suggest an algorithm to train a perceptron to classify hand-written letters as A
or B. ;
Hand-written letters have variations in their appearance; however, they are
quite distinct. Let the perceptron output be one when the letter detected is an A and
zero when the letter detected is B. Then, the algorithm may be

= Assign random values to the weights and the threshold.
» Present an input (digitized picture).
= Calculate the actual output:

y =f[2 [ow,(0)x0) — 9)].

i=1

Outputs

Inputs

Figure 6.4 A simple perceptron, which (by definition) has only one layer of processing
units (PE = processing unit).
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= Adjust the weights to reduce the output error:
if y is correct; w; (t + 1) = w(5)
if y = 0 and should be 1; w, (t + 1) = w(n) + ax (1)
if y = 1 and should be 0; w; (t + 1) = w(?) — ax (1),

where 0 = a < 1 is a positive constant that controls the adaptation rate.

A commonly used activation function in neural networks is a signoid
(s-shaped) function such as

1
D=7 c= (6.5)

where ¢ is a positive scaling constant. This function is particularly interesting
because its derivative is very easy to compute.

EXAMPLE:

Given that

£() = 7= show that f(x) = fI[1 = FGO)].

RHS = f'(x) = e(1 + ¢ ) (™)
LHS = ¢fnll — f¥)]

= c 1
=T+e=|l " T+e"

= g | verd — 1
T T L e

cx

= ce”
¢l =k & e

=f'x)
or  f'(x) = cf()[ — f0].

The signal velocity df/dt measures a signal’s instantaneous time change. One
can write

df _ df  dx

dr  di dt (0.8
Thus, the signal velocity depends explicitly on activation velocities. This depen-

dence leads to an increase in the number of unsupervised learning laws that adapt
with locally available information [15].
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6.4.2 Pictorial lllustration of Simple Perceptron Behavior

The summation

2 (w;x; — 6) in equation (6.4) can be rewritten as

i=-1

n
2 (w;x;), where the term wyx, takes care of the bias 6. Now we can write
i=0

the perceptron input as a vector,

X = (xy, Xy k). : 6.7)
We can also write the corresponding weights as a vector,
W = (wy, wps... W) (6.8)

The weighted sum can be replaced by the dot product, W - X. The result is a line
in an n-dimensional space. It partitions the space such that the group A pattern is
in one half and group B is in the other half.

To get a better picture, let us examine a two-dimensional example. Consider
the case of a two-input logic OR function. The output is one if the input patterns
are 01, 10, or 11. The output is zero for the pattern 00 as illustrated in Figure 6.5.

<%:l
y=1

Class II Class I

Figure 6.5 The OR problem in pattern space (x, and x, are inputs, y is an output).
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X

|

e

Figure 6.6 The XOR problem in pattern space.

A line L can be found such that the space is divided into two halves, one for
class I (giving output y = 1) and one for class II (giving output y = 0).

The objective of a training algorithm is to adjust the weights so that the per-
ceptron produces that line. Obviously, not all patterns are linearly separable. A
simple classical example is the case of the exclusive-OR (XOR) logic function. An
output of one represents the pattern 01 or 10, while an output of zero represents
the patterns 00 or 11. The pattern space is illustrated in Figure 6.6. There is no
linear division of space to produce the classification required. The perceptron can-
not solve the problem.

It is sometimes useful to view the operation of the neural processing element
as a non-linear mapping operation. The mapping converts the input vector X
to a scalar y. The mapping can be thought to occur in two steps: a linear
weighted mapping of X to u, and a non-linear mapping of u to y through the
function f.

y=fw)
=f(W-X)

An operation other than the dot product may be used depending on how the simi-
larity between W and X is measured. So in general, y = AW © X), where © is
confluence operation (scalar or distance measure).
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Outputs
Yi Yo Ya
Qutput layer
Hidden layer
Input layer
X X3 X3

Figure 6.7 Typical architecture of a multi-layer perceptron.

6.4.3 The Multilayer Perceptron and Back Propagation

To overcome the difficulty of classifying linearly inseparable patterns, a multi-
layer perceptron is used. A typical architecture is shown in Figure 6.7.

The new model has three layers: an input layer, an output layer, and a layer
in between referred to as a hidden layer. In the literature, some authors do not
count the input layer as one of the layers in the architecture because the neurons
of the input layer do not learn (and hence they refer to Figure 6.7 as a two-layer
perceptron). The architecture shown in Figure 6.7 is referred to, in general, as lay-
ered feed-forward network. The neural structure of the brain is generally multi-
layer, and has a mostly feed-forward structure.

Suppose the output of node i, y,, is to be sent to node J- Then the input to node
J will be

% = 2 (w7, 6.9)

where w;; is the weight between nodes i and j. The output of node j is y; given by

y=j 2 (Wi (6.10)

where f; is the activation function of layer J. Figure 6.8 illustrates the relation
between the units in two consecutive layers.
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Figure 6.8 Two units in two consecutive layers.

A learning rule can be defined based on minimizing the mean-square error (or
energy function) in recognizing a pattern p. Let E, be the measure of error
defined by

1
E=1 2 @ — ) 6.11)
J

where 1, is the target output from node j for pattern p and y,; is the actual output.
Now, we can write the change in the error as a function of the change in weight
between two units in consecutive layers using the chain rule as

0E, _OE, ox,

dw;  Ox, Ow, (6.12)

We can define the change in error as a function of the change in inputs to a unit as
aEP -

B e 8, (6.13)

: oW, 2
Since == = 0 except when k = i, then
ii
ox,;
ﬁ =Yz (6.15)

U
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From equations (6.13) and (6.15) we get
oE,
=G, e

(6.16)

From equation (6.16), one may conclude that to decrease the value of E,, the

weight changes, A w,, are to be proportional to 8, - y,,. That is,

Aw; = 10y, (6.17)
where 7 is a constant.

In order to use equation (6.17), we should evaluate Spj for each of the units.
We can use the chain rule to write

OF, < Ok, aypj
= 6.18
i ox,,; ayw ax ke

Since y,; = f/(x,,), then

aypj r
o, i) (6.19)

. 1
Also, since E, = 5 E — y,;)" then

JE
P
gpj Sl T Ve (6.20)
Thus, we get
= fl' (xpj) (tpj = ypj)- (6.21)

Equatlon (6.21) is useful for the output units, since the target outputs, 7,;, and the
actual output, y,, are available. The same does not apply to units in the hidden
layer, since the target output is not known. If j is not an output unit, we can mod-
ify equation (6.21) as follows:

oE JoE, 9
5pf:$;=2(5f'§:)

= Bx aym szk) p, (6.22)
- _2 8yWi
k
This leads to
8pj =f j (xpj) zk' (Spkwjk). (6.23)

If f; (x,) is selected as the sigmoid function given by equation (6.5), its derivative
is easy to evaluate, as illustrated earlier, leading to
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F! @) = )l = fx,))
= oyl = y,). (6.24)

EXAMPLE: Suggest an algorithm to train a multilayer perceptron network using the previous
analysis.
A possible algorithm can be as follows.
= Assign random values to weights and thresholds.
= Present an input for pattern p,
Xp = gp Xypee:
and a target output
T, = fobi.
= Calculate the actual output for each layer and present it as an input to the
next layer.
Yo = i Ei’wt'xi
= Adjust the weights starting from the output layer,
wit + 1) = w; () + 8, x,,
using the appropriate expression for 8, (either equation (6.24) or equation
(6.23). '

The algorithm of the previous example is referred to as error back-
propagation or just back-propagation. The concept of back-propagation to train
multilayer networks was proposed independently by several authors [41-44].
There are several variations of the above algorithm that use the concept of back-
propagation. Back-propagation is a widely used method to train neural networks.

The training time depends on the convergence rate, or how fast the network
error approaches zero. Learning difficulty may occur. To see a possible difficulty,
suppose we consider a network in which we can change just one weight. The error
E vs. the weight w may be as shown in Figure 6.9.

If we have two variable weights, instead of one, we need to add a third axis
to Figure 6.9, leading to a three-dimensional landscape. In general, n variable
weights lead to an n-dimensional landscape. A complex energy surface leads to
slower learning. The objective of back-propagation is to adjust the
weights so that E is minimized. Each minimum (called a basin of attraction in an
n-dimensional surface) represents a solution. A difficulty occurs if the network
settles into a local minimum rather than a global minimum (B, for example, rather
than A in Figure 6.9). The network stops learning.

A local minimum occurs when two or more disjoint classes are categorized as
being the same. This difficulty may be avoided by using clearly distinguishable train-
ing examples. Adding more hidden layers reduces the occurrence of local minima.
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w

Figure 6.9 One-dimensional error vs. weight.

Outputs
vy

/ Weight
1

Threshold
value

Inputs

Figure 6.10 A network that can solve the XOR problem (the numbers on the arrows
represent the weight, and the number in the units represents the threshold value).
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An input
/ toC

() (B)

Figure 6.11 The response of the network of Figure 6.10 to various input patterns (num-
bers in the squares are inputs to the units).

The network may be made to escape settling in a local minimum by adding
random values to the weights. This can have the effect of moving the network to
some random position away from the local minimum.

A multilayer network that can solve the XOR problem is shown in Figure 6.10.

EXAMPLE:

Show that the network of Figure 6.10 solves the XOR problem.

The output is to be zero for patterns 00 and 11. The output is to be one for
patterns 01 and 10.

In Figure 6.11-a, the inputs x; and x, are 00.

It follows that the input to unit Ais O X 1 + 0 X 1 = 0; the same applies to
unit B. Since the inputs in both cases are below the thresholds, 0.5 and 1.5, respec-
tively, the output of units A and B will be zero and the inputs to unit C will be zero,
which is below the threshold of 0.5. This leads to an output of y = 0. Similar rea-
soning applies to Figure 6.11-b and Figure 6.11-c.
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Another possible network for solving the XOR problem is shown in Figure
6.12. It can be analyzed in similar fashion to the analysis shown in Figure 6.11.

Outputs

Inputs

Figure 6.12 A network for solving the XOR problem that has one unit in the hidden layer.

y

X Txa X3 Xy

Figure 6.13 A network to solve the parity problem for four inputs.
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EXAMPLE

The XOR problem can be generalized to solve the parity problem. The output is one
if an odd number of input units are on, and zero otherwise. The XOR is a parity
problem with two inputs. Figure 6.13 shows a suitable network for four inputs.

For a given application there is more than one possible network architecture;
various numbers of hidden layers and units per layer may be employed. One may
then wonder how many hidden layers and how many units per layer are needed to
reduce the error to a particular value? Is there an optimal network architecture?
How can it be reached?

It has been shown [45—47] that we do not need more than two hidden layers,
given enough units per layer. The number of units may increase exponentially with the
number of inputs. A network with the fewest possible number of units may be thought
of as an optimal network. It is expected to have a better performance as reflected in a
reduction in the training time and computational cost, an improved generalization, etc.

There are two practical concepts that may be used to reach an optimum net-
work. Either we start with a network with an excess of units and then trim it, or
we start with a network with few units and then add more units as needed. For both
the trimming and construction concepts, several approaches are possible.

One can examine a given trained network, and then remove unimportant units,
i.e., units with minimal contributions. The trimmed network is then retrained [48].
Another approach is to modify the training algorithm so that each weight is allowed
to decay to zero. Thus the network, during training, optimizes itself by removing
unnecessary connections. Unneeded units can also be removed [49, 50].

On the other hand, several approaches have been suggested to construct an
optimum network starting with fewer units. For example, the tiling algorithm [51]
builds a network by starting with several units at the bottom of the architecture, then
adding layers. Each layer has fewer units than the previous one. Eventually, the
process comes to an end with a single output unit. The upstart algorithm [52] builds
the network unit by unit, starting with a unit (it becomes the top unit of the archi-
tecture) with all inputs connected to it. All cases of wrong output are noted and a
layer with two units is added (if needed), with one unit to correct the wrong ON
cases and the other to correct the wrong OFF cases. The connections of the new units
to the inputs are given large weights to override the previous output. Layers may be
added in a similar fashion if necessary. The resulting architecture can then be con-
verted to another architecture with a more conventional appearance. The single hid-
den-layer algorithm [53] builds a network using a single hidden layer. Hidden units
are added one by one, each separating one or more of the target patterns.

6.4.4 Recurrent Networks

In the previous section we presented examples of supervised learning in feedfor-
ward networks, i.e., networks that only allow unilateral connections between units
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Figure 6.14 An example of Hopfield architecture with four nodes (processing units).

from inputs toward outputs. In this section we still present examples of supervised
learning, but in networks that allow bilateral connections between units, i.e., recurrent
networks. We will describe Hopfield networks and Boltzmann machine networks.

A. Hopfield Networks

The architecture of a Hopfield network [54] is shown in Figure 6.14. All nodes are
connected bilaterally to one another. The network can be used as an associative
memory, or to solve an optimization problem, or as content-addressable memory.
The network is most suitable when exact binary (1 and —1 or 1 and 0) representa-
tions are possible, for example, with black and white images where input elements
are pixel values, or with ASCII text where input values are sets of bits [55].

The network can be trained to recognize a set of patterns. Then when present-
ed with a corrupt pattern it can recognize it in spite of the change in its appearance.
Figure 6.15 shows a set of patterns that can be used in training the network and
Figure 6.16 shows a pattern (L) corrupted to various degrees.

The network is considered to have a state determined by each individual unit.
Now when a trained network is presented with a corrupted pattern of one of the
images it was trained to recognize and then left alone, the state of the network
keeps changing until it reaches a stable steady-state. The node outputs after con-
vergence give the pattern as the network remembers it.

The number of patterns that the network can memorize and recall accu-
rately is very limited. Hopfield [54] showed that the number of classes to be
stored in the network should be less than 15% of the number of nodes in the network.
For example, to store 10 classes, more than 70 nodes will be needed. If we try to store
more than that, the network may have faulty recollection and spurious output patterns
may occur, i.e., the network may respond with a pattern that is not from the training
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Figure 6.15 A set of training patterns.

(B)
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Neural Networks Models / 123

patterns. Problems may also occur if the training patterns share many bits. In this case,
they will not be suitable for training and cannot be stored and recalled accurately.
An alternative view of a Hopfield network is shown in Figure 6.17. The network
is rearranged to represent n nodes systematically, making its implementation easier.
The operation of a Hopfield network can be divided into two stages, the
learning stage and the recognition stage.

1) Learning stage. During this stage exemplar patterns are presented to the net-
work. The connection weights are assigned so that the network associates each

:
o ®

(A)

Figure 6.16 Pattern L corrupted to various degrees.

(B)
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Figure 6.17 Hopfield network rearranged to represent n nodes systematically.

pattern from the exemplar with itself. This is done according to

M=l
| S ee fori#
Wi = 1s=0
0 fori=j

where w; is the connection weight from unit i to unit j, x°; is element i of the exem-
plar pattem for class s(x'; is either +1 or —1), and M is the number of patterns.

2) Recognition Stage. An unknown pattern is presented at time zero,
WO =g im0 1,2,

where w(f) is the output of node i at time ¢ and x; is element i of the input pattern
(x; is either + 1 or —1).
Then the network is allowed to iterate until convergence according to

Mj(i+1)=fh{2wijui(t)] O=j=M-—-1,

where the function is a hard limiter (it assumes values of either +1 or —1).
One unit is updated at a time; the unit may be selected for updating ran-
domly so that all units have the same average updating rate.
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B. Boltzmann Machine Networks

A Boltzmann machine network may be viewed as an extension of a Hopfield net-
work. It provides a method that allows the network to escape from local minima
and move to a global minimum in the energy landscape.

The technique was inspired by metallurgical annealing, where a metal is
heated close to its melting point, then allowed to cool slowly down to room tem-
perature. The technique allows the metal to reach a stable low-energy configura-
tion, since it leads to removal of crystal defects such as dislocations.

Here we will give a very short account of the Boltzmann machine; a detailed
discussion may be found in reference 56.

The network is fully-connected; however, some units are chosen, arbitrarily,
to be input units, some to be output units, and the rest as hidden units. Learning
occurs in two phases, incremental and decremental.

1) Incremental (reinforcement)

» The input and output units are clamped to their correct values. The network
is allowed to cycle through its states. A unit is selected randomly and a
probability function is calculated. For the ith unit,

1

Bossid - e5ir

where AE; = 2 w;y; can be viewed as an activation energy.
J

« A random number generator (which uses a uniform probability density
function) is then used to generate a random value, & between 0.0 and 1.0.
If ¢ = p, the unit sets its output to + 1; otherwise, it sets its output to —1.

= The temperature parameter, 7, is decremented until the output is stable.

= The weight between two units is incremented if they are both on.

2) Decremental (forget bad associations) In this phase, only the inputs are
clamped. The network is allowed to reach thermal equilibrium again. The weights
between units are decremented if both units are on. The process is repeated until
the weights are stable.

6.4.5 Unsupervised Competitive Learning

A. Kohonen Self-organizing Networks

A typical Kohonen network is composed of a two-dimensional layer (flat grid)
connected to the inputs as shown in Figure 6.18. The nodes are connected to each
other, and all the inputs are connected to every node. Each node in the grid repre-
sents an output node.
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Figure 6.18 A typical Kohonen’s network.

The objective is to convert this random set of nodes into subsets of organized
nodes. Each subset recognizes an input pattern. The Kohonen algorithm may be
described as follows:

= Start with small random values for the weights w,-j(t) (connecting n inputs
to m output nodes). Assign a large value for the neighborhood size NE(?).
Present an input x,(f), x,(f) _x,(2),

Calculate the distance d; in n-dimensional space between the output vector
and the weight vector. The node with the smallest distance has the closest
association to the training input.

el

d= >, () = wy)

1=

Select the output node with the minimum distance, and give it the desig-
nation j* (the winning neuron).
« Update weights to node j* and its neighbors; the training law used is

wyt + 1) = wylt) + 1Ot —wy(1),

where j € NE.(1), 0 =i=n — 1, and the term n(¢) is a gain term that represents
the rate of learning (0 < m() < 1) that decreases with time.
The neighborhood NE;.(7) decreases with time, thus localizing the area of
maximum activity.
= The process is repeated, and the weights eventually converge and are fixed
after the gain term is reduced to zero.
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B. Adaptive Resonance Theory (ART) Networks

When people learn, they can add more to what they have learned without the need
for complete retraining and without forgetting all that they have already learned.
In electronic networks, however (in Kohonen’s network, for example), a cata-
strophic forgetting may occur if we try to add more patterns to a stable trained net-
work. There is a trade-off between the stability and the ability to learn new data.
This is known as the stability-plasticity dilemma. The so-called ART networks
were developed [57-60] to overcome this dilemma, i.e., to produce a stable net-
work that can learn new data. The key idea is to spare some of the output units for
new patterns. If the input and a stored pattern are sufficiently similar, they are said
to be resonating. If there is not sufficient similarity, a new class of patterns is
formed utilizing the unused output units. The network gives no response if all out-
put units are used.

The ART network has been implemented in several versions: ART1, ART2,
ART3, and ARTMAP [61], which is a supervised version of ART. ART1 can sta-
bly learn to categorize binary input patterns presented in an arbitrary order; ART2
does the same thing with either analog or binary input patterns; ART3 can carry
out parallel search, or hypothesis testing, or distributed recognition codes in a
multilevel network hierarchy. ARTMAP is a supervised version that can rapidly
self-organize stable categorical mappings between n-dimensional inputs and
m-dimensional output vectors. The following outline relates to ART1.

The network structure is shown in Figure 6.19. The network has an input
(comparison) layer and an output (recognition) layer. The units in the output layer
are connected so that lateral inhibition can occur, i.e., units with larger output can
suppress other units. A feedforward and feedback connection exists between every
unit in the input and output layers. Each layer has a logic control, designated con-
trol-1 and control-2, connected to each unit in the layer. Control-1 is one when-
ever a valid input is present, and forced to zero if any unit in the output layer is
active. Control-2 will be one for any valid input pattern, and goes to zero after a
failed vigilance test. A vigilance test evaluates the similarity of an input to a stored
exemplar by finalizing the ration count of the number of ones in each. It controls
the generation of new class patterns. The stored exemplar weight vectors are
sometimes called long term memory, as opposed to the transient states, which are
called short-term memory.

The operation of the network may be summarized as follows.

1) The initialization phase
= The feedback weights are set to 1, 7,(0) = 1.
» The feedforward weights are set such that

1
[N

wy(0) =
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Figure 6.19 a) A schematic of ART network. b) A unit in the input layer.

O=i=N—10=j=M=1]

where N is the number of input nodes, and M is the number of output nodes.
= The vigilance threshold, p, is given a value such that 0 = p = 1. p controls
the resolution of the classification.

2) The Recognition Phase. A new input is applied and the matching is computed.

N-1
M = Ewﬁ(t)xi,OSjEM—]
i=0



6.5

VLS| Implementation of Neural Networks / 129

The largest output is designated ;. and found from

M = Max; [

3) The Comparison Phase. The winning unit feeds back its pattern by adjust-
ing the weights 7}, to the input. The ratio § is calculated by

Bt

e

X,

1

If S > p, then the classification is complete.
If § < p, then a search phase starts.

4) The Search Phase. First the present active output unit is zeroed and control-
1 is thus forced to zero (all outputs are zero now). Then, the input is reapplied;
the recognition and comparison phases are repeated. The process goes on until
§ > p. If no classification is possible, the input is declared unknown and is allo-
cated to a previously unassigned unit in the output layer.

VLSI Implementation of Neural Networks

VLSI implementation has been extensively discussed in the literature (see for
example reference 29 and references 62-70). The advantage of using hardware to
realize neural functions is the higher speed and density on one hand and the lower
power dissipation and cost on the other compared to simulations running on con-
ventional computers. In general, neural hardware can be tailored for the needs of
an application that requires a single neural network of fixed size and topology as
well as for an application that requires a set of different neural networks. It can
also be designed for general purpose neurocomputing.

There are two general approaches to VLSI implementation. The first has the
objective of solving the neural system equations using either standard or custom
VLSI chips. The second approach is not very much concerned with attempting to
replicate the biological system but rather with the design of a fault-tolerant adap-
tive VLSI chip guided by the concepts of biological systems. The algorithms used
for software implementation may not be directly usable for VLSI implementation.
The neuron transfer function is an exact mathematical function in software imple-
mentation, while it is an approximate function in VLSI implementation.

Although analog computation may have its advantages, digital techniques
are more advantageous in communication. Analog computation can also be
achieved using digital techniques.

The need for information storage for less than 1 s can be satisfied with a sim-
ple capacitor. Larger storage times require periodic restorations of charge, as in
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1

Figure 6.20 A possible VLSI model of a neuron

dynamic RAMS. Floating polysilicon gate technology, which is used in EPROM
and EEROM, may be suitable for very long storage times.

There are several limitations on VLSI implementation including the chip
area, the number of package pins, and the number of required connections.

In the following we give some illustrative examples of using amplifiers,
resistors, and capacitors to model a neuron and neural network.

EXAMPLE:

VLSI model of a neuron

Figure 6.20 shows a circuit that can be used to simulate the action of a neuron.

The resistors associated with each input (with conductances Wy, W, . W,) Sim-
ulate the synaptic weights the neuron offset. As mentioned earlier, the transfer func-
tion of the neuron in this realization is less flexible than in software implementation.
Also, the synaptic weights are less flexible; they have positive values only. Two
amplifiers are needed to simulate the effects of excitory and inhibitory inputs.

The net input of the amplifier can be determined by

1

(x,—u)+(x2*u)w2+._.+(xn—u)w2:u.R_eE

)

where x;, x,, ... x, are the input voltages, and u is the input to the amplifier.

Wy, W,, ..w, are the conductance values representing the weight of each
input, and Req. is the input resistance of the amplifier. Assuming Req. to be very
large, we get

n

(wix;)

The output voltage, y, is then given by
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Figure 6.21 An implementation of a Hopfield network.

n

2 (w;xi)

i=1
y:A n
5

i=1

where A is the amplifier gain and 6 is the offset voltage.

EXAMPLE:

6.6

VLSI Hopfield neural network

Figure 6.21 shows an implementation of a Hopfield network. Each neuron is
represented by inverting and noninverting amplifiers so that it can handle both pos-
itive and negative values of weights. A densely connected resistive network is used
for feedback; the network is symmetric and has no self-feedback connections.

A comprehensive survey and compilation of VLSI implementation of neural
networks reported in the literature up to the year 1994 is given in reference [79].

Concluding Remarks

In the previous sections of this Chapter we discussed a few neural network sys-
tems with varied properties. For practical applications, neural networks are desired
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to have certain properties. The desired properties are, in general, achieved with
varying degrees of success (the membership of a particular neural network in the
success set is to be defined according to the needs of the proposed application!).
Some of these desired properties are the following:

= Non-linear separation
A neural network should be able to classify patterns that have separation
boundaries of any shape.

= Short training time
In many applications the training time is very important—the shorter, the
better.

* On-line training
It is a desired feature of a neural network if it can learn more without the
need for a complete retraining, i.e., if the network can keep on learning
without the corruption of previous learning.

= Handling overlapping classes and corrupted patterns
Situations may occur where the input patterns features may overlap to a
certain extent. The ability to handle these situations is desired.

= Accepting linguistic inputs
In some cases, it is more convenient to have a linguistic description of the
input rather than exact numerical values. (The incorporation of fuzzy logic
becomes a must in these cases).

Our objective in the previous sections was to pave the way to understanding
fuzzy-neural systems. The discussion was mainly concerned with neural networks
concepts rather than their applications. A curious reader may wonder about the
practical applications of neural networks on their own (without fuzziness). Such
applications have been discussed extensively in the literature (see for example ref-
erences [71-78]). One of the early applications was NET Talk. It is a hierarchical
back-propagation neural system [76]. It is composed of three fully-connected lay-
ers. The objective was to read aloud a printed English text. It was the first appli-
cation of its kind using neural networks. The input to the network was a printed
text that stepped in front of the input sensors one letter at a time. The output was
a phoneme code, which was directed to a speech generator to give the pronuncia-
tion of the letter at the center of the network’s field of view. The field of view con-
sisted of seven letters. The extra letters provided contextual information to help the
network in choosing the best pronunciation. The network was trained using 1024
words from a side-by-side English text/phoneme source. After 50 training epochs
an accuracy of 95% was achieved. The network was shown to degrade gracefully
with rapid recovery upon retraining.

Another classical application example is the phonetic typewriter [77, 78]. It
is a system that uses a Kohonn network as one of its building units. The objective
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of the system was to produce a typed text from dictation. The neural network was
the part of the system that classifies the phonemes. The system was reported to
have correct classification that varied between 80% and 90%. The system was able
to adapt to new users using supervised training techniques.

Chapter 6 Questions

6-1.
6-2.
6-3.

6-4.

6-5.
6-6.
6-7.

6-9.

6-10.
6-11.

6-12.
*6-13.

*6-14.

What is an artificial neuron?
What is an electronic (artificial) neural network?

What was the original objective of electronic neural networks? Has it been
achieved? Can it be achieved?

Compare and contrast the operation of a serial digital computer and a neural
network.

What is the XOR classification problem?
Compare and contrast supervised and unsupervised learning.

Show that the following functions have the derivatives indicated (y' = %,
¢ = constant). What can they be used for in neural networks?
a) y = tanh(cx); ¥ =c(l =y

b)) yr=igc e ¥ = —2exe™
oy = 2 i
ot Y T+ P

Sketch the function y = 1/(1 + ce™) for ¢ = 0.5, 1, 5, and 10. Which value of ¢
makes the function closer to a hard limiter?

A neuron has two inputs, x; = 1, and x, = 1. The corresponding weights are w, =
—3 and w, = 2. The threshold, # = 1. The transfer function is given by
y=1/(1+e™*).

n
a) Calculate x = z(xjwf-) =4

b) Calculate the output, y, for ¢ = 0.5 and ¢ = 10.
Give a simple analog circuit that simulates a neuron.

State some of the advantages of using simple analog circuits in simulating neural
networks.

State some of the features that one may consider when designing a neural network.

Lewenstein and Olko (Network 2 (1991): 207-230) put forward a new class of neu-
ral network models; they referred to it as Quantum Neural Networks. Describe
qualitatively their approach.

Select one of the following applications of neural networks and discuss it briefly.
a) Manufacturing ICs (G.S. May, IEEE Spectrum (September 1994): 47-51.)
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*6-15.

b) Audio Synthesizer (M, Thorson, Dr. Dobb’s Journal (February 1993).

¢) Character Recognition (K. Karnofsky, Dr: Dobb’s Journal (June 1993).

d) Control of Automative Fuel-Injection System (M. Majors et al., IEEE Control
Systems (June 1994): 31-36.)

Obtain, for example using the Internet, a list of recent neural products (hardware
and software).

6-16. Mark the following statements as true or false; correct the wrong statements.

1) The brain may be viewed as a parallel, distributed processing system.
2) Dendrites carry the output from the neuron.
3) All learning laws are biologically justified.
4) Hebian learning implies increasing effectiveness of active junctions.
5) Learning corresponds to adjusting the value of the weight of the network.
6) Perceptrons can solve the XOR problem.
7) XOR is an example of a linearly separable problem.
8) AND is an example of a linearly separable problem.
9) The axon can be modeled as if it were a transmission line.
10) The training set is usually the same as the test set of a neural network.
11) Perceptrons fail in solving linearly separable problems.
12) Learning process will always converge.
13) ART3 handles binary inputs only.
14) ART is an unsupervised competitive learning algorithm.
15) ART did not solve the stability-plasticity problem of neural networks.
16) ART2 is implemented for real and binary inputs.
17) Von Neumann architecture is used in neural networks.
18) Hopfield networks are self-organizing.
19) Hopfield networks are symmetric and fully connected.
20) A Hopfield network is a single-layer attractor network.
21) Kohonen network is a neural network algorithm that is based on statistical
mechanics.
22) Basins of attraction are the lowest parts in neural network architecture.
23) The traveling salesman problem addresses the problem of selling neural net-
works at a good price.
24) The energy surface is n-dimensional, where n is the number of varying
weights.
25) The stability-elasticity problem does not exist in multilayer perceptrons.
26) A hypercube is a cube in an n-dimensional space.
27) Aurtificial stupidity may have useful applications.
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Fuzzy Neural Networks

Introduction

Fuzzy neural networks and neural fuzzy systems are powerful techniques for var-
jious computational and control applications. The area is still under a great influx
from both theoretical and applied research. There is no systematic or unified
approach for incorporating the concepts of fuzziness and neural processing. The
objective of this chapter is not to encompass all the existing ideas up to the pre-
sent, but rather to provide a view of some representative ideas in this area so that
the reader can pursue the progressing literature with ease.

It may be educational to attempt a classification along the same lines of the
previous chapter, i.e., discuss fuzzy neurons [1-5], fuzzy perceptrons [6-10],
fuzzy recurrent networks, fuzzy competitive learning incorporating fuzzy
Kohonen’s networks [11-17], fuzzy ART [18, 19], and fuzzy ARTMAP [20, 21].
Then, we can discuss fuzzy associative memory (FAM)[22], which uses fuzzy
matrices instead of fuzzy neurons to represent fuzzy associations.

Other approaches to viewing the combination of fuzziness and neural net-
works are possible. For example, we may consider three classes (with fuzzy
boundaries!); the first encompasses neural networks that are used to generate
fuzzy rules and membership functions using traditional neural network archi-
tectures. The second encompasses fuzzy systems used to interpret linguistic
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statements for neural networks. The third class encompasses systems that do not
belong to either of the previous classes. Still other approaches are possible (see for
example references 23-26).

In the following sections we do not start with fuzzy neurons, since most
fuzzy neural networks do not employ fuzzy neurons as such. We first present fuzzy
multilayer perceptrons, fuzzy Kohonen networks, and fuzzy ART and related
models. Then, we discuss a model of a fuzzy neuron and a network built around
it. Finally, we give an insight into neural fuzzy control.

Fuzzy Multilayer Perceptron

7.3

Several models have been proposed to incorporate fuzziness into the backpropagation
multilayer perceptron networks. Pal and Mitra [7] put forward a particularly inter-
esting model that is capable of fuzzy classifications of patterns. Both numeric and
linguistic inputs are expressed in terms of membership values to the linguistic prop-
erties low, medium, and high. When the input is numerical, it is fuzzified first using a
bell-shaped membership function. An n-dimensional input feature is thus converted
into a 3n-dimensional feature to be processed by the neural network.

In the proposed model, the network passes through two phases: training and
testing. A supervised learning algorithm is used for training; it assigns output
membership values that correspond to the training inputs. Errors in membership
assignment are backpropagated and used to adjust the connecting weights. The
error backpropagating from nodes with higher membership will have more weight.
After convergence, the network is tested using a part of the same training data.

Although the model is time-consuming in training, the test of the network
performance for fuzzy classification of speech data have given favorable results.

Fuzzy Competitive Learning

The competitive learning models discussed in section 6.4.5 usually utilize a
single-layer feedforward network. The neurons compete; the winning neuron learns
and the losing neurons do not learn—a concept referred to as winner-take-all.

Such models may underutilize the available neurons. In addition, some neu-
rons may never win if their initialization weights are far away from what is
required by the training set [27, 28]. The concept of winner-take-all leads to loss
of information regarding how close other neurons were to winning [29]. It has also
been reported that the winner-take-all networks require log,(m) steps to perform
one competition [30].
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Fuzzy competitive learning can be useful in overcoming the above draw-
backs of the traditional competitive learning. The concept of membership to the
set of winners is introduced. Instead of having one dominating winning neuron,
we assign a degree of winning to each neuron depending on its distance to the cur-
rent training pattern. Neurons learn according to their membership to the winning
set during competition. Instead of a winner-take-all rule, a learn-according-to-
how-well-it-wins rule results [31]. A measure of confidence in the resulting out-
put can also be reached.

The Kohonen algorithm presented in section 6.4.5 can be modified as fol-
lows [31].

= Start with small random values for the weights, w;(1), that connect n inputs
to m output nodes.

= Present an input x(2), x,(1), ..., x,(1).

= Calculate the distance in n-dimensional space between the output vector
and the weights vector

n=1
4= > @lt) = wy(t)y

R

= Based on the computed distance, dj, determine the membership, s of each
neuron, j, to the set of winners.
= Update each competing neuron’s weights:

wit + 1) = wy(t) + n(OZ;(1)[x; — wi(D)],

where 7(z) is the learning rate and Z,(1) is a fuzzy scaling factor that is a
function of w,.
= The process is repeated until convergence.

In the previous example of a fuzzy Kohonen network, the input is assumed
to be crisp; fuzziness was utilized to change the winner-take-all concept and retain
the degree of winning information.

Kohonen networks can be modified using fuzzy concepts in a different way
by considering fuzzy inputs. The input patterns may have imprecise or incomplete
features due to noise corruption, for example. Sometimes, it is costly to extract
features of a given pattern. In such situations, linguistic hedges become useful,
that is, inputs such as low, medium, and high may be used instead of exact numer-
ical values.

Such a model was put forward by Mitra and Pal [32]. The input consists of
membership values for linguistic properties and some contextual class membership
information. They also proposed a new definition for the gain factor. The effective-
ness of their algorithm was demonstrated on the speech recognition problem.
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Fuzzy ART

Fuzzy ART is an extension of ART]1. It incorporates computations from fuzzy set
theory into ART1 neural networks [18, 19].

In section 6.4.5b we presented the basic idea of ART1; a key expression in
the ART1 algorithm is the comparison

iy
sz; > p, (7.1)

where x; is the input, t;; 1s the feedback weight, and p is the vigilance threshold.
That expression can be written in set theory notation as

J%‘}%ﬂ =D (7.2)

where M is the logical AND intersection.

Now, the fuzzy set theory calculations can be incorporated in the algorithm
by changing the logical AND calculations into fuzzy AND calculations. This leads
to the expression

'%%Il >p (7:3)

where /\ is the fuzzy AND defined by (x/\y), = min (x,,y,), and the norm | - |is
defined by

x| = 2. pel. (7.4)

Proliferation of categories is avoided in fuzzy ART if inputs are normalized;
that is, for some y > 0,

IXJ = yfor all inputs X. €7:5)

Normalization can be achieved for each incoming vector a by setting

X = ﬁ (1.6)

Complement coding is an alternative normalization rule; it has the advantage
of preserving amplitude information. The technique uses on-cell and off-cell pairs
to normalize input vectors.

Let a represent the ON-response and a® (the complement of a) represent the
OFF-response. The complement coded input X is defined by

X = a)=1, a7 a,a5°0" an (7.7)
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Now, we have
X| = |, a°)

=1 i=1

S (1.8)

In other words, inputs preprocessed into complement coding form are automati-
cally normalized.

Fuzzy ARTMAP

ARTMAP, also referred to as predictive ART, is a supervised neural network sys-
tem. It uses two ART1 modules (ART, and ART,) that are capable of self-
organizing stable recognition categories. The two modules are linked by an
inter-ART associative memory network and an internal controller. During training,
the ART, receives streams of input patterns [a®] and [b"™], respectively, where b®
is the correct prediction given a®.

The ARTMAP system was reported [20, 21] to learn much more quickly and
accurately than other algorithms such as back propagation. As with ART,
ARTMAP can continue learning until its memory is fully utilized.

The concept was generalized by replacing ART, and ART, modules by their
fuzzy counterparts. The system thus structured is known as fuzzy ARTMAP. The
system can learn each input as it is received on-line rather than performing off-line
optimization. The system’s on-line learning was demonstrated to have an accuracy
that ranges from 88.6% to 98.0% for training set sizes that range from 100 to
100,000 randomly chosen points.

Comparison of on-line training of fuzzy ARTMAP and back propagation
indicated a better performance of fuzzy ARTMAP. The test task was to distinguish
two spirals. About 20,000 epochs were needed for the back propagation system,
while five epochs were sufficient for fuzzy ARTMAP (an epoch is defined as one
cycle of training on an entire set of input exemplars).

Fuzzy Min-Max Neural Networks

There are similarities between fuzzy ART and fuzzy min-max neural networks
[33, 34]. Both networks stemmed from the fuzzification of ART networks; how-
ever, the details of the two algorithms are different.

The fuzzy min-max system divides the n-dimensional pattern space into
hyperboxes. Each hyperbox is defined by a pair of min-max points, the min points
being
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Vj = (le, Vigs «e- vjn)= (7.9)
and the max points being
Wf = (Wj]1 ng-, Wj,,)- (710)

These two points in hyper-space are enough to define a hyperbox.

There is a membership function associated with pixels of every input pat-
tern. The j™ hyperbox fuzzy set, B,, can then be defined by an ordered-pair set
given by

B, = {A,V,W,b (A, V, W)} forallh=1,2,..m, (7.11)

where A, = (a,,;, @y, ... a,) is the A" pattern in the input data, and 0 = bi(A;, V,
W) = 1 is the membership function of the j™ hyperbox.

The membership function, b;, is a measure of the degree to which the K
input pattern, A,, is contained within the hyperbox defined by the max and min
points. The membership will be one if the pixel is contained completely within the
hyperbox.

Simpson [33, 34] proposed a membership function that meets the above
requirements as the sum of two complements. This leads to

n

b; = % 2 [max (0, 1 — max (0, y min(l, a@;,, — wp)))
i=1
+ max(0, 1 — max(0, y min(1, v; — a;))))] (7.12)

& % 2 (1 = flaw = w ¥) = fO; = a VI,

G =

1 i
where f(x,vy) = {xy ; O0=xvy=1
0 Sl

The sensitivity parameter, y, controls how the membership values decrease
as the distance between A, and B, increases. When v is large, the fuzzy set
becomes less fuzzy—it moves towards becoming crisp. Thus, by selecting a large
value for the parameter v, it is possible to define crisp cluster boundaries as a spe-
cial case of fuzzy boundaries.

Fuzzy Min-Max Learning
The fuzzy min-max learning algorithm proposed [33] consists of four steps: ini-

tialization, expansion, overlap test, and contraction. These steps can be described
as follows.
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Initialization
The algorithm uses two sets of clusters: the committed set, C, and the uncommit-
ted set, U. The uncommitted clusters are the ones available for adjusting their min-
max points. Once the min-max points are defined, they become committed.

The initialization process occurs by setting the min points, V;, and the max
points, W; as follows:

Vj=lande=Q for all B, € U,

where 1 and 0 are n-dimensional vectors of all ones and all zeros, respectively.
This initialization ensures that the first pattern committed to a hyperbox
results in a single point that is identical to the input pattern.

Hyberbox expansion
The second step is to identify the closest hyperbox, which can be expanded, if
needed, to the input pattern.

For a hyperbox B; to expand so that it includes A, the following constraint
must be satisfied

2 [max(w;, ay,) — min(vy, @)=

where 0 = 6 = 1 is a parameter, defined by the user, that sets a maximum bound
on the size of the hyperbox.

If that constraint is satisfied, then the min and max points can be expanded
as follows:

new — 3 old
Vo= min(v;;-, a,) ,and

w e = max(w <,
A hyperbox B; € U is selected, and the above expansion equations are used if all
B, € Care exhausted without any possible expansion.

n

a,) foralli=1,2,...,n

Overlap test

After expanding B; € C, an overlap test between B; and the remaining B, € Cis
performed. An overlap occurs if any of the following conditions is satisfied for
each of the n-dimensions:

Vi <y < Wi < Wy, OF
Vi < Vii < Wy =% w;;, OF

=
vy <vpS=Swy < Wi, OF

=
Wy < Vi =Wy < wy.
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Hyperbox contraction

If an overlap between two hyperboxes is identified, an immediate contraction is
done to eliminate that overlap. The elimination of the overlap is done on dimen-
sion-by-dimension basis. The contraction process is carried out as follows.

If v; < wy < w; <wy,, then

old old
wy Tw i

new __ new
Vb S 2
I, = Vi < W < Wy then
old old
new _ .., mew _M
Vi e ) :
If v; <, <w,; < w;; then the contraction is performed on the smaller over-
lap. i.e.,
new _ old & s o £ .
V= Wy if wy, Vi S Wi TV SW; T Vg

new — 4, old

otherwise, w j; s

If v <v; =w; < wy, then

new _ old - o 2 .

Vi = w s ifwy — v <wy — v
2 new — ., old
otherwise, v ;i = v°.

A different contraction technique can be used to suit the requirements of a partic-
ular application. The above steps are repeated until cluster stability is reached.

Figure 7.1a shows an implementation of the fuzzy min-max cluster [34]. The
input layer consists of #n neurons, and the output layer consists of m neurons. There
are two connections from each input neuron to each output neuron, as clarified in
Figure 7.1b. Each output neuron gives the degree to which the input pattern A,
belongs to each of the available clusters. The full membership occurs for one
hyperbox fuzzy set. Thus, this network architecture implements each hyperbox
fuzzy set as an output neuron.

Fuzzy Neurons

The fuzzy neural networks discussed in the previous sections used non-fuzzy neu-
rons. It is possible, however, to put forward a model of a fuzzy neuron, and then
construct a network using it as a processing unit.

In this section we give an overview of a fuzzy neuron model proposed by
Kwan and Cai [5]. We also discuss a network built around that model for pattern
recognition.
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Fglayer
(hyper box nodes)

Fa layer
(input nodes)

Figure 7.1 (a) A fuzzy min-max neural network (each connecting arrow represents a dual
connection, as illustrated in (b)).

The fuzzy neuron model is similar to the classical neuron model in that it has
n weighted inputs, x;, with weights w,, where i = 1, 2, 3,...n. Both x; and w, have
real values. Also, it has m outputs, Yis where j = 1, 2,..., m. In general, the output
may have real values in the interval [0, 1].

Fuzziness is introduced by associating each output with a membership value
that indicates to what degree an input pattern (x,, x,,...x,) belongs to a fuzzy set.
The output is expressed as

yj =‘g] (S) J =5 ]-! 2, 3! ey ML, (7‘13)

where the g; are the m output functions of the fuzzy neuron, which represent the
membership functions of the input pattern in all the m fuzzy sets, and s is the state
of the fuzzy neuron given by

s =flz — ), (7.14)

where fis the activation function, f1is the activation threshold, and z is the net input
to the fuzzy neuron. It is given by

z = h(w;x,) i= 123 an (7.15)
where h is an aggregation function. The above description is summarized in
Figure 7.2

A network built around the fuzzy neuron discussed above will have these
fuzzy neurons in the input, output, and hidden layers. The requirement of each
layer is different. Such differences can be modeled by the choice of the aggrega-
tion and output functions.

Kwan and Cai proposed a feedforward neural network and competitive algo-
rithm, but supervised. The concept is very close to that of the previous networks,
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Figure 7.2 A fuzzy neuron.

but the network has a different architecture. The network can be trained to recog-
nize an input pattern composed of N, X N, pixels. The network proposed consists
of four layers: input, output, and two hidden layers.

The input layer accepts the data of an input pattern. Its objective is to trans-
form the pixel values of the input pattern into normalized values between zero and
one. The neurons of this layer are called input fuzzy neurons (in-FN). Each neu-
ron has only one input; this leads to z = x.

The hidden layers are composed of a layer of max-FNs followed by another
one composed of min-FNs. A maximum fuzzy neuron (max-FN) has a max func-
tion as its aggregation function, i.e.,

n
z = max (w,x,). (7.16)
i=1
A minimum fuzzy neuron has a min function for aggregation, i.e.,
n
z = min (w;x,). (717
i=1
The max-FN layer fuzzifies the input pattern, while the min-FN layer gives the
similarities of the input pattern to all of the learned patterns.
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The neurons of the output layer accept fuzzy input and produce crisp outs,
i.e., they perform defuzzification. They are referred to as competitive neurons
(comp-FN). The output of a comp-FN is defined by

0 ; s<@6 (7.18)
POy Yl G2 i o
with @= (€, Cos «: Cp)

where ¢ is a threshold function, and the ¢, are competitive variables.
The layer fuzzifies the input patterns through a fuzzification function (a
weight function), w(m' + n'), which may be defined by

wim',n') = exp(— Bm'*+ n'?) (7.19)

where m' and n'relate to the N; X N, input pattern, and 3 is a parameter to be
determined by the learning algorithm.

Using max-FNs and fuzzification weights leads to affecting the state of sev-
eral FNs in the second layer by one dark pixel in the input pattern. The network
thus focuses on one pixel but sees the surrounding pixels to some degree. The
parameter 3 determines that degree. The smaller the value of B, the more pixels
seen. If B is too small, the network may become unable to separate some distinct
training patterns. If 8 is too large, the network may lose its ability to recognize dis-
torted patterns.

The third layer presents the similarities of the input pattern to all of the
learned patterns. The output layer uses one comp-FN for each of the m learned pat-
terns. If an input pattern is close enough to the mth learned pattern, the output of
the mth comp-FN will be one and all the other outputs will be zero.

The network proposed was simulated using C language [5]. After training
using 36 alphanumeric exemplar patterns, the network was able to achieve 100%
recognition rate. The same recognition rate was achieved with one pixel shifted in
eight directions (up, down, left, right, up-left, up-right, down-right, and down-
left). An average recognition rate of about 92% was achieved with two pixels
shifted in eight directions. The recognition rate of the two-pixels shift cases
became about 98.6% after training with 36 exemplar patterns and 72 distorted
patterns. The one-pixel shift case stayed at 100% recognition rate.

Fuzzy Neural Control Systems

The basic advantage of fuzzy control systems, as discussed in Chapter 5, is that
they do not require a mathematical model of the process under control. Fuzzy sys-
tems depend on linguistic description of the process. The inputs are given in terms
of linguistic variables and membership functions. The variables are processed with
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a predetermined set of fuzzy logic IF-THEN rules. The response to each rule is
reached through a fuzzy implication rule. A defuzzification process then leads to
a crisp output. The membership functions and the fuzzy rules are usually deter-
mined through the observation of a system operated by a human expert. The mem-
bership functions and the rules represent the knowledge or experience of the sys-
tem. They are time-consuming to determine, test, and adjust. The learning ability
of neural networks can be used to produce a fuzzy control system that can learn
by example and generalize.

A few questions may arise. Can the fuzzy networks discussed in the previous
sections (or similar ones) be used? Would it be more advantageous to separate the
fuzzy controller from the neural network? or is it more advantageous to implement a
fuzzy controller using neural network concepts? What determines stability, response
time, etc.? Then finally, one may wonder about a systematic design technique with
the simplest possible architecture. Various authors [35, 37-42] have reported on
neuro-fuzzy systems with varied design approaches. Following we give examples of
neuro-fuzzy control applications.

EXAMPLES:

A. Neuro-Fuzzy Control of a Car [35]

Lin and Lee [35] implemented the idea of a fuzzy car [36] using neural network
concepts. The core of a fuzzy control system, i.e., rule base, fuzzification, defuzzi-
fication, inference, and feedback (see Figure 5.5), was realized by a recurrent five-
layer neural network. The car becomes able to learn from examples to move along
a track that has rectangular turns.

Architecture. The first layer of the network is composed of linguistic nodes;
each node represents an input linguistic variable. Three variables are used for car
control: x,, x,, and x,. The variables x, and x, represent the distance of the center
of the car from the horizontal and vertical boundaries at the corner, respectively.
The variable x, represents the current steering angle. The linguistic variable, y,
represents the next steering angle.

The second layer of the network is composed of term nodes. They act as
input membership functions for the input variables. The layer can be thought of as
performing the fuzzification process.

The third layer is composed of rule nodes. Each node represents one fuzzy
rule. The layer performs a fuzzy rule base. ‘

The fourth layer is composed of term nodes. They act as membership func-
tions for the output, with the links from the third layer to perform as the decision-
making logic (inference engine).

The fifth layer is composed of two sets of linguistic nodes. One set is for the
training data, i.e., the desired output. The output is fed back to the fourth layer
nodes. The second set of nodes gives the actual control output. Figure 7.3 gives a
summary of the tasks performed by the neural network.
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Figure 7.3 Summary of the tasks performed by the neural network implementation of
the fuzzy car.

Learning Algorithm. Lin and Lee [35] used a hybrid learning algorithm to
train the network. It has two phases. The first phase uses the concepts of self-
organization clustering to locate the membership functions by finding their
centers and widths, and to find fuzzy logic rules by competitive learning. The
training data are input-output pairs, fuzzy partitions, and the desired shapes of
the membership functions.

The second phase uses supervised back-propagation to adjust the widths and
centers of membership functions optimally. The training data in this phase are
input-output pairs, fuzzy partition, and fuzzy logic rules.

In controlling the fuzzy car, 61 fuzzy rules were learned. For example, they
found that when x, = 2, x; = 3, and x, = 2, the output y is 12 is interpreted as:

IF x, is term 2, and x, is term 3, and x, is term 2, THEN y is term 6.
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Results. A general purpose simulator written in C language was used to simu-
late the car control system proposed. The speed of the car was kept constant, and
sensors to provide the state values of x,, x;, and x, are assumed. Lin and Lee [35]
found that the training path and the path under neural-fuzzy control coincide under
various initial steering angles.

B. Neuro-Fuzzy Control of an Incineration Plant [37]
Krause et al. [37] reported on a neuro-fuzzy controller implementation for a refuse
incineration plant in Hamburg-Stapelfeld, Germany. The development tool fuzzy
TECH was used to implement the neuro-fuzzy controller. In the case of the incin-
eration plant, and in other similar situations, there are advantages of neuro-fuzzy
control over fuzzy control application. A fuzzy controller working for a particular
plant cannot be applied to a different plant without repeating the process of acquir-
ing dedicated knowledge about the system behavior in the new plant, a process
that can be time consuming. Neuro-fuzzy controllers, however, can learn from
examples and generalize. This leads to saving time in applying a controller
designed for one plant to another plant.

Krause et al. put forward a development strategy to facilitate the use of fuzzy
controllers in several plants with similar construction. The main points of the strat-
egy are as follows:

= Collect input and output data of the system and reduce it to a reasonable
amount that is representative of the system’s behavior.

= Select a training method. Parameters are to be chosen for modification by
the neuro-fuzzy algorithm.

= The learning algorithm is executed until convergence, i.e., until it reaches
the selected error thresholds. If it does not converge, use a different system
setting or a different learning algorithm and repeat learning.

= On-line optimization for security assurance.

C. Neuro-Fuzzy Control of Tank Level [42]
In the process of producing lubricant oil, vacuum distillation is used. It results in
distillate oil and reduced oil that includes wax. The wax is removed in a solvent
dewaxing plant, in which a tank receives the solvent and lubricant oil for further
processing.

The control objective is to change the rate of flow from the tank smoothly
and to keep the fluid level in the tank stable.

The neuro-fuzzy controller used has a different architecture compared to the
controllers discussed in the previous examples. It is composed of three components:

= A statistical component to calculate the flow rate tendency in the flow rate
based on operation data.
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= A fuzzy controller to correct flow rate, determined by the statistical com-
ponent, to stabilize the tank level.

« A neural network to predict the inflow rate of the tank during the transient
state. It has five units in the input layer, ten in the hidden layer, and one for
the output layer.

The implemented system showed that the flow rate was as smooth ds that
achieved by a skilled operator. The tank level varied from 35% to 75% as opposed
to 30% to 80% achieved by manual operation.

Concluding Remarks

The interaction between fuzzy logic theory and neural networks may occur at var-
ious levels. It can be modeled in varied ways. Several models have already been
put forward; there is plenty of room for many more to appear. The models, in gen-
eral, are not biologically justified; however, a model is useful from an engineering
point of view as long as it is successful in improving or initiating a practical appli-
cation. In other words, the degree to which a model is acceptable is measured by
how successful it is when used in practical application. The fact that numerical
calculation, rather than symbol manipulation, is fundamental to both fuzzy logic
and neural networks does not mean that electronics engineering is heading back
towards the empirical era. But, it can lead to a change in our view of theories and
models. A lot of work is needed to make the neuro-fuzzy systems as established a
discipline in electronics engineering as is digital electronics.

Chapter 7 Questions

7-1. Compare and contrast the foundation of neural networks and fuzzy logic.
7.2. Discuss how fuzzy systems and neural networks can be combined.
7.3, What are the merits of using neural networks in fuzzy control systems?

#7.4. Learning fuzzy systems have several applications; select one of the following appli-
cations and discuss it briefly:
a) Pattern recognition (H. Kwan, I[EEE Trans. Fuzzy Systems 2 (1994): 185-193).
b) Rice taste analysis (H. Ishibuchi et al., Fuzzy Sets and Systems 64 (1994):
129-144).
¢) Control of refuse incineration plant (B. Krause et al., Fuzzy Sets and Systems 63
(1994): 329-338).

7.5. Mark the following statements as true or false; correct the wrong statements.
1. Fuzzy associative memory uses fuzzy matrices instead of fuzzy neurons.
2. Neural networks can be used to generate fuzzy rules.
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3. Neural networks can do anything fuzzy systems can do.

4. Fuzzy systems can do anything neural networks can do.

5. Fuzzy neural systems are the ultimate in electronics; no further advances are

possible.

. A neural network may be used to interpret linguistic statements for a fuzzy system.

7. In Pal and Mitra’s fuzzy perceptron, a supervised learning algorithm generates

output membership assignments.

“Winner-take-all” refers to the action of supervised fuzzy learning.

9. Fuzzy competitive learning assigns a degree of winning to competing neurons.

10. “Learn according to how well the neuron learns” is the learning rule of
competitive learning.

11. Fuzziness may be incorporated in a Kohonen network through one standard
technique.

12. An ARTMAP system learns much faster than a back-propagation algorithm.

13. A fuzzy min-max learning algorithm is similar to fuzzy back-propagation.

14. A fuzzy neural network is always built using fuzzy neurons.

15. Fuzzy control systems can learn by example.

16. The neuro-fuzzy control model of Lin and Lee uses both self-organization and
back-propagation.

17. In general, there is no biological justification for neuro-fuzzy systems.

(=2

=]
b

7-6. Suggest a possible implementation of a fuzzy flip-flop using neural networks.

References

145

2,

S.C. Lee and E.T. Lee, “Fuzzy Neural Networks,” Mathematical Biosciences 23
(1975): 151-177.

T. Yamakawa and S. Tomada, “A Fuzzy Neuron and Its Applications to Pattern
Recognition,” Proc. of the Third IFSA Congress (Seattle, Washington, August 1989)
943-948.

. T. Yamakawa, “Pattern Recognition Hardware System Employing a Fuzzy Neuron,”

Proc. the Int. Conf. on Fuzzy Logic and Neural Networks (Japan, July 1990) 30-38.
T. Yamakawa and M. Furukawa, “A Design Algorithm of Membership Functions of a
Fuzzy Neuron Using Example-based learning,” IEEE Int. Conf. on Fuzzy Systems
(San Diego, March 1992) 75-82.

. HEK. Kwan and Y. Cai, “A Fuzzy Neural Network and Its Application to Pattern

Recognition,” IEEE Trans. Fuzzy Systems 2 (1994): 185-193.

JM. Keller and D.J. Hunt, “Incorporating Fuzzy Membership Functions into
Perception Algorithm,” IEEE Trans. Pattern Analysis Machine Intell. PAMI-7 (1985):
693-699.

. S.K. Pal and S. Mitra, “Multilayer Perceptron, Fuzzy Sets, and Classification,” IEEE

Trans. Neural Networks 3 (1992): 683-697.

. 8. Horikawa, T. Furuhashi, and Y. Uchikawa, “On Fuzzy Modeling Using Fuzzy

Neural Networks with the Back-propagation Algorithm,” IEEE Trans. Neural
Networks 3 (1992): 801-806.



10.

11.

12.

13

14.

57

16.

1

18.

19.

20.

21,

A

23.

24.

25,

26.

27

28.

References / 155

. Q. Huand D.B. Hertz, “Improving the Convergence of Back-propagation Using Fuzzy

Logic Control,” WCNN ’93, vol. 2, (1993): 47-51.

J.J. Shann and H.C. Fu, “Back-propagation Learning for Acquiring Fine Knowledge
of Fuzzy Neural Networks,” WCNN 93, vol. 2 (1993): 66-69.

C. Isik and F. Zia, “Fuzzy Logic Control Using a Self-organizing map,” WCNN 93,
11-56, 1993.

PS. Khedkar and H. R. Berenji, “Generating Fuzzy Rules with Linear Consequences
from Data,” WCNN ’93, TI-18, 1993.

T.L. Huntsberger and P. Ajimarangsee, “Parallel Self-organizing Feature Maps for Un-
supervised Pattern Recognition,” International J. General Systems 16 (1990): 357-372.
D. Zhang, M. Kamel, and ML.L. Elmasry, “Fuzzy Clustering Neural Network (FCNN)
Using Fuzzy Competitive Learning,” World Congress on Neural Networks, 1993,
[1-22, July 11-15, Portland, Oregon.

J. Nie, “Fuzzy Modeling Using Self-organizing CPN Networks,” WCNN ’93, 11-43,
1993.

EL. Chung and T. Lee, “Fuzzy Competitive Learning,” Neural Networks 3 (1994):
539-551.

S. Mitra and S.K. Pal, “Self-organizing Neural Network as a Fuzzy Classifier,” IEEE
Trans. Systems. Man. and Cypernetics, V. 24 (1994): 385-399.

G.A. Carpenter, S. Grossberg, and D.B. Rosen, “Fuzzy ART: Fast Stable Learning and
Categorization of Analog Patterns by Adaptive Resonance System,” Neural Networks
4 (1991): 759-T71.

M.J. Healy and T.P. Candell, “Discrete Stack Interval Representation and Fuzzy
ART1,” WCNN '93, T1-82, 1993.

G.A. Carpenter, S. Grossberg, N. Markuzon, J.H. Reynolds, and D.B. Rosen, IEEE
Trans. Neural Networks 3 (1992): 698-713,

G.A. Carpenter, S. Grossberg, and J.H. Reynolds, “Fuzzy ARTMAP, Slow Learning
and Probability Estimation,” WCNN 93, vol. 2 (1993): 26.

B. Kosko, Neural Networks and Fuzzy Systems (Prentice Hall, 1992). Englewood
Cliffs, NJ

A.E. Rocha and R. Yager, “Neural Nets and Fuzzy Logic,” in Hybrid Architectures for
Intelligent Systems, ed. A. Kandel and G. Langholz (CRC Press, 1992) 4-28 Boca
Raton, FL.

H. Takagi, “Fusion Techniques of Fuzzy Systems and Neural Networks, and Fuzzy
Systems and Genetic Algorithms,” SPIE Proc. of Technical Conference on
Applications of Fuzzy Logic Technology v. 2061 (September 1993): 402—413.

J.J. Buckley and Y. Hayashi, “Fuzzy Neural Networks: A Survey,” Fuzzy Sets and
Systems 66 (1994): 1-13.

M.M. Gupta and D.H. Rao, “On the Principles of Fuzzy Neural Networks,” Fuzzy Sets
and Systems 61 (1994): 1-18.

S.C. Ahalt, A.K. Krishnamurthy, and D.E. Melton, “Competitive Learning Algorithms
for Vector Quantization,” Neural Networks 3 (1990): 277-290.

S. Grossberg, “Adaptive Pattern Classification and Universal Recording: 1. Parallel
development and coding of Neural Feature Detectors,” Biological Cybernetics 23
(1976): 121-134.



156 / Fuzzy Neural Networks

29.

30.

31

32.

38

34.

35

36.

27

39.

40.

41.

42.

C. Dacaestecker, “Competitive Clustering,” Proceedings Int. Neural Networks
Conference 2 (1990): 833.

J.H. Winters and C. Rose, “Minimum Distance Automata in Parallel Networks for
Optimum Classification,” Neural Networks 2 (1989): 127-132.

FL. Chung and T. Lee, “Fuzzy Competitive Learning.” Neural Networks 7 (1994):
539-551.

S. Mitra and S.K. Pal, “Self-organizing Neural Network as a Fuzzy Classifier,” JEEE
Trans. Systems, Man. and Cyber, 24 (1994): 385-399,

P.K. Simpson, “Fuzzy Min-max Neural Networks-Part 1: Classification,” IEEE Trans.
Neural Networks 3 (1992): 776-786.

PK. Simpson, “Fuzzy Min-max Neural Networks-Part 2: Clustering,” IEEE Trans.
Fuzzy Systems 1 (1993): 32-45.

C.-T. Lin and C.S. Lee, “Neural-network-based Fuzzy Logic Control and Decision
System,” IEEE Trans. Computers 40 (1991): 1320-1336.

M. Sugeno and M. Nishida, “Fuzzy Control of Model Car,* Fuzzy Sets and Systems
16 (1985): 103-113.

B. Krause, C. von Altrock, K. Limper, and W. Schifers, “A Neuro-fuzzy Adaptive
Control Strategy for Refuse Incineration Plants,” Fuzzy Sets and Systems 63 (1994):
329-338.

. RR. Yager, “Implementing Fuzzy Logic Controllers Using a Neural Network

Framework,” Fuzzy Sets and Systems 48 (1992): 53-64.

J.J. Buckley and Y. Hayashi, “Hybrid Neural Nets Can Be Fuzzy Controllers and
Fuzzy Expert Systems,” Fuzzy Sets and Systems 60 (1993): 135-142.

E. Bouslama and K. Ichikawa, “Application of Neural Networks to Fuzzy Control,”
Neural Networks 6 (1993): 791-799.

C.-L. Chen and W.-C. Chen, “Fuzzy Controller Design by Using Neural Network
Techniques,” IEEE Trans. Fuzzy Systems 2 (1994): 235-244.

T. Tani, S. Murakoshi, T. Sato, M. Umano, and K. Tanaka, “Applications of Neuro-
fuzzy Hybrid Control System to Tank Level Control,” in Fuzzy Logic Technology and
Applications ed. R.J. Marks II, (1994): 247-252.



GLOSSARY

ADAPTIVE: A system that can be modified during operation to meet a specified criteria.

ALGORITHM (ALGORISM): A step-by-step procedure that can be carried out mechani-
cally; it can be realized by software or hardware. Alkhawarizmi (780-850) wrote:
“with my two algorithms, one can solve all problems—without error, if God will.”

ART: Adaptive Resonance Theory: a self-organizing network. The first version, ART1,
can process only binary input patterns. The second version, ART2, can process
real input patterns; ART3 is an improved ART2 in which the processing is more
stable.

ATTRACTOR NETWORK: A neural network that has an energy surface that attracts the
current state of the network to a particular energy state or states.

ANTECEDENT: The clause that implies the other clause in a conditional statement.

ASSOCIATIVE MEMORY: A system that stores data in parallel and recalls them based on
some feature of the data.

ADAPTIVE Fuzzy SYSTEM: A fuzzy system that does not require rules from a human
expert; it generates and tunes its own rules. A neuro-fuzzy system or fuzzy-neural
systems are adaptive fuzzy systems.

BACK-PROPAGATION: A supervised learning rule for multilayer perceptrons that operates
by calculating the value of the error function for a known input, then back-
propagating the error from one layer to the previous one. Each neuron has its
weights adjusted so that it reduces the value of the error function until a stable
state is reached.

BAM: Bidirectional Associative Memory. An attractor network in which activation
moves back and forth between two layers of neurons until a stable state is reached.
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BOLTZMANN MACHINE: A neural network algorithm that is based on statistical mechanics.
It uses simulated annealing to reach stable states.

BASINS OF ATTRACTION: The valleys of the energy surface of a neural network. The
energy surface is a graph of the energy function vs. weights, with the energy func-
tion being a measure of the amount by which the input differs from the desired
output. Thus, the basins of attraction give all possible solutions, i.e., values of
weights that produce correct output for a given input.

COMPENSATORY OPERATORS: Non-Zadeh operators, i.e., operators not defined by simple
min-max rules. They fall into two general categories; the first encompasses opera-
tors based on simple arithmetic transformations, such as the bound sum and differ-
ence. The second encompasses operators based on more complex functional
transformations, such as Yager operators.

COMPARATOR: A circuit, commonly based on an operational amplifier, that has two
inputs and one output. The output is zero, positive, or negative depending on
whether the input is equal to, greater than, or smaller than the reference input.

CONSEQUENT (SUCCEDENT): The resultant clause in a conditional statement.

Crisp SET: The classical set, as opposed to a fuzzy set. It is a collection of items. An
item can be either a member of that set or not. All sets are subsets of the universal
set (mother of all sets).

COMPETITIVE LEARNING: A learning algorithm that requires neurons to compete with
each other in adjusting their weights.

DEGREE OF MEMBERSHIP: An expression of the confidence or certainty that an element
belongs to a fuzzy set. It is a number that ranges from zero to one.

DEFUZZIFICATION: Finding the best crisp representation of a given fuzzy set.

EXCLUDED MIDDLE LAW: The principle that every proposition is either true or false. The
principle leads to classical set theory. Fuzzy logic and fuzzy sets do not obey this
law, since fuzzy sets allow partial membership.

FAM: Fuzzy Associative Memory; an associative memory based on fuzzy logic principles.

Fuzzy FLIP-FLOP: A generalization of Boolean JK flip-flop. It uses fuzzy states and can
be used for fuzzy information processing.

Fuzzy CONTROL: A control system based on an algorithm composed of IF . . . THEN . .
rules. A fuzzy logic operation may be used in the construction of the rule e.g., IF

-AND ... THEN ... . More than one rule may fire at the same time, each with
its own strength. A defuzziﬁcation process follows to generate a crisp control
action.

Fuzzy oPERATORS: Operators that combine fuzzy antecedents to produce truth value.
Zadeh defined fuzzy operators in terms of min-max rules. Several other methods of
definition exist; the alternatively defined operators are referred to as non-Zadeh
operators or compensatory operators.

Fuzzy SET: A set that allows its elements to have degrees of membership. These
degrees range from zero, when the element is not in the set, to one, when the element
is in the set. The objective is to define precisely what is intrinsically vague. A crisp
set allows only two values of membership, either one or zero. An ultrafuzzy set has
its membership function itself as a fuzzy set.
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Fuzzy LOGIC: A scheme of systematic analysis that uses linguistic variables, such as
hot, cold, very, little, large, small, etc., as opposed to Boolean or binary logic,
which is restricted to true or false states. The objective of the scheme is to enable
the computer to make human-like decisions.

Fuzzy NOT oPERATOR: Zadeh defined the fuzzy negation operation by puz = 1 — .
Alternative definitions exist, although they may not be commonly used. For exam-
ple, Yager, Sugeno, and threshold NOT operators are defined. The threshold NOT
is defined by

oA 1 =ik
palx; k) [0 = s

Fuzzy MODIFIER: An added description of a fuzzy set that leads to an operation that
changes the shape (mainly the width and position) of a membership function.

FuzziricatioN: Changing a crisp number or set to a fuzzy number or set.

Fuzzy ENTROPY: A measure, which ranges from 0% to 100%, of the fuzziness of a set.
The more a set resembles its negation, the greater its fuzzy entropy, and the fuzzier
it is.

FLOATING MEMBERSHIP FUNCTION: A feature introduced in the AL220 fuzzy controller
(from Adaptive Logic Inc.) whereby the center and width of a membership function
can be varied dynamically based on values from input or output registers.

GENETIC ALGORITHM: An efficient method of searching for the optimal solution without
carrying out an exhaustive search. The search carried out by a series of random
choices is governed by the rules of genetics.

GRADIENT DESCENT SYSTEM: A system that attempts to reach its stable state by moving
consistently down the steepest portion of its energy surface.

Hepces: Linguistic terms that intensify, dilute, or complement a fuzzy set.

HOPFIELD NETWORK: A single-layer attractor network. It consists of a number of neurons
{(nodes); each is connected to every other neuron. The weights on the link from one
neuron to another are the same in both directions. The network takes only two-
state inputs.

HYPER-CUBE: A cube in an n-dimensional space. A crisp set defines a corner of a unit
hyper-cube, while a fuzzy set defines a point inside the hyper-cube.

INVERTED PENDULUM PROBLEM: The problem of controlling the speed of a small vehicle
to keep a rigid pole attached to it by a pivot balanced. It was solved classically by
mathematical modeling. The problem was also modeled linguistically to illustrate
the potential of a fuzzy control approach.

KALMAN FILTER: An algorithm that gives an optimal estimate of the next state of a system,
given the present state of a linear system and all of its past states.

KOHONEN NETWORK: A self-organizing neural network. All the neurons are in one (two-
dimensional layer with inputs connected to every neuron. Neurons are connected
laterally to their immediate neighbors; neighborhood interactions decrease with
time.

LEARNING LAW: The rule used during training of a neural network for systematic
updating of the weights.
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LINGUISTIC VARIABLE: Common language expression used to describe a condition or a
situation, such as “hot,” “cold,” etc. It can be expressed using a fuzzy set defined
by the designer.

LOGIC CIRCUIT: A circuit that compares inputs and produces outputs according to a set
of logic rules. The simplest logic circuit performs one simple logic operation, such
as an AND, OR, or NOT operation. The operation of a logic circuit may be
described using a logic expression or a truth table.

MAPPING: A transformation, particularly between abstract spaces.

MEMBERSHIP FUNCTION: The mapping that associates each element in a set with its
degree of membership. It can be expressed as discrete values or as a continuous
function. Triangular, trapezoidal, and Gaussian membership functions are com-
monly used.

NEURON: The biological neuron is a cell that builds up the nervous system. The dendrites
are its input parts, the axon is its output part, and the synapse is the junction
between the axon of one neuron and the dendrite of another. When a neuron is stim-
ulated on its dendrites, it sums the incoming potentials. If the sum is high enough, it
sends an action potential down the axon. The operation is modeled in an electronic
neural network by a processing element, PE, that performs a weighted summation
and has a threshold and a sigmoid-type transfer function. The term neurode is
sometimes used to distinguish the artificial neuron from the biological one.

PARADOX: A contradiction reached by derivation from unexceptional premises, for
example, Russell’s paradox: the set of all sets that are not members of themselves
is a member of itself only if it is not, and it is not only if it is. Simply put, “an
army barber was ordered to shave everyone who does not shave oneself; who
shaves the barber?”

PYTHAGOREAN THEOREM: The square of the length of the longest side in a right-angle
triangle is equal to the sum of the squares of the lengths of the other two sides.
The theorem can lead to a measure of the degree to which one fuzzy set contains
another through the subset-hood theorem.

PID CONTROLLER: A cascade control device inserted in the forward path of a feedback
control system. Its input is the error signal and its output is the control action. It is
comprised of three control terms: proportional, integral, and derivative. Increasing
the gain of the proportional term increases the speed of the system response and
reduces the steady state error, but tends to destabilize the system. The integral term
can remove the steady-state error. It tends to destabilize the system because of the
extra phase lag it introduces. The derivative term speeds up the transient response;
it introduces a phase-lead and thus has a stabilizing effect.

PERCEPTRON: A single-layer neural network that performed the first training algorithm.
It can solve only linearly separable problems.

SINGLETON: A set that has one member only.

SIMULATED ANNEALING: The process of introducing and then reducing the amount of
random noise introduced into the weights and inputs of a neural network. The
process is analogous to methods used in solidification, where the system starts with
a high temperature to avoid local energy minima, and then gradually the temperature
is lowered according to a particular algorithm.
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STABILITY-PLASTICITY PROBLEM: The situation when neural networks are not able to
learn new information without the destruction of previous learning; a time-consuming
retraining will be needed every time new information is to be learned. ART networks
solved this problem.

SUGENO OPERATOR: The Sugeno complement is a compensatory operator that uses a
class parameter to determine the strength of the negation. It is defined by

N o =
Uz 1+kP-A! = k<ee
The Sugeno operator becomes the standard Zadeh operator when k = 0.

TRUTH TABLE: A table that describes the operation of a logic circuit, or logic function,
by listing all possible combinations of the inputs and the corresponding output values.

TSP: Traveling Salesman Problem. The problem of selecting an optimal path for a travel-
ing salesman to visit several diverse locations once. It is a classical optimization
problem.

UNCERTAINTY PRINCIPLE (HEISENBERG UNCERTAINTY PRINCIPLE): It is not possible to
know with certainty both the position and momentum of a particle. It is usually
expressed as Ax Ap, = h/4w, where Ax and Ap, are the uncertainty in the posi-
tion and momentum, respectively, and / is Plank’s constant.

YAGER OPERATORS: A type of compensatory operators. The complex function defining
the operator uses a parameter whose numerical value depends on the strength of
the fuzzy operation. The operators converge to Zadeh’s operators as the parameter
becomes very large. The objective of such operators is to indicate the importance
of the set membership truth functions. Yager AND, OR, and NOT are defined by

= 1 =, (0 = p B A=,
T — mn(l, (T — gl + ()9 ) ind
iz = (1 = (u)H™
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Examples of Fuzzy
Logic Software

1.

162

FuzGen (shareware)

Alston Software Labs

1320 Standiford Ave. #242
Modesto, CA 95350 USA
Tel/Fax: 209-522-8666
76040.2247 @ compuserve.com

GA FuzzyWare (shareware)

RP Huang

3842 West Sheffield Ave.
Chandler, AZ 85226 USA

huang @drwho.iac.honeywell.com

Togai Demo

(a collection of demonstration programs
for fuzzy control of an inverted pendulum)
Togai InfralLogic, Inc.

30 Corporate Park, Suite 107

Irvine, CA 92714 USA

Tel: 714-975-8522

Fax: 714-975-8524



. FuzzyFan (shareware)

(an example of fuzzy control of a fan)
Henry Hurdon

15 Summit Avenue

Thunder Bay, Ontario

Canada P7B 3N7

hdhurdon @flash.lakeheadu.ca

. Fuzzy Logic Designer
Byte Dynamics Inc.
14608 E. Olympic Ave.
Spokane, WA 99216 USA
Tel: 800-233-2983

Fax: 509-926-6130

. FuziCalc

(fuzzy spreadsheet)
FuzziWare, Inc.

Knoxville, TN 37937-1287
Tel: 800-473-1287

. O’INCA, Design Framework for Windows

Intelligent Machines, Inc.
1153 Bordeaux Drive
Sunnyvale, CA 94089 USA
Tel: 408-745-0881

Fax: 408-745-6408

. NeuFuz4-C

National Semiconductor Corp.
2900 Semiconductor, POB 58090
Santa Clara, CA 95052 USA
Tel: 800-272-9959

Fax: 800-428-0065

. CubiCalc and Fuzzy Logic

Hyper Logic Corporation

1855 East Valley Parkway, Suite 210
Escondido, CA 92027 USA

Tel: 619-746-2765

Fax: 619-746-4089
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10.

11.

12.

13

14.

TIL Shell

Togai Information, Inc.
5 Vanderbilt

Irvine, CA 92718 USA
Tel: 714-588-3800
Fax: 714-588-3808

Fuzzy Decision Maker,

Fuzzy Thought Amplifier, and
Fuzzy Knowledge Builder
Fuzzy Systems Engineering
POB 27390

San Diego, CA 92198 USA
Tel/Fax: 619-748-7384

Fuzzy Logic Development Kit (FULDEK)
TSI Enterprises, Inc.

PO Box 14155

Albuquerque, NM 87191-4155 USA

Tel: 505-298-5817

MatLab, Fuzzy Logic Toolbox
The Math Works, Inc.

24 Prime Park Way

Natick, MA 01760-1500 USA
info@mathworks.com

Mathematica, Fuzzy Logic Pack
Wolfram Research Inc.
info@wri.com
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Examples of Fuzzy Logic
Hardware

1. From Adaptive Logic Inc.:
(800 Charcot Ave., Suite 112, San Jose, CA 95131, USA,
75471.2055 @compuserve.com)

AL220 8 bit fuzzy microcontroller

NLX221 4-8 bit digital 1/O single chip fuzzy microcontroller with EEPROM
NLX222 4-8 bit analog and digital /O single chip fuzzy microcontroller
NLX230 8 bit microcontroller (30 million fuzzy rules per second)
NLX1100 Fuzzy pattern comparator

NLX112/113 Fuzzy data controllers

2. From Omron Corporation:
(One East Commerce Drive, Schaumberg, IL 60173, USA,
Fax:; 708-843-7787/8568)

C500-FZ001 Fuzzy logic processor module for Omron C-series PLC’s
ESAF Fuzzy process temperature controller

FB-30 AT FP-3000 based PC AT fuzzy inference board
FP-1000/3000 Digital fuzzy controller

FP-5000 Analog fuzzy controller

3. From Togai Infralogic Inc.:
(5 Vanderbilt, Irvine, CA 92718, USA, info@til.com)

FC110 Digital fuzzy processor
FCAFL SI cores based on Fuzzy Computational Acceleration
FCD10xxx FC110 based modules

4., From Toshiba:
(9775 Toledo Way, Irvine, CA 92718, USA, Fax: 714-8859-3963)
T/FC150 10-bit fuzzy inference processor
LFZY1 FC150-based NEC PC fuzzy logic board
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Source code generated automatically by FLD design package for the example given in
section 5.3.1.
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*
dkkkkkhhkhhdkkkhddhkbhkkhhthhhhkhhhd bt khhhhhhhhihhhdhdhhddddbdkidhdd
e de o s d v o e ok o

Module: train.c
AR RRI AR AR KRR R A S RAARRIRA AR AR AR A ARG AR R AR AR R h R A Ak bk kdkhkhhhhdhhhd

kAR AR AR AL

%7
/*

EERERRAXRERERAAER LI ERE AR AR AR R AR TR AR AR R kh kbt hhhhths
o e e e e ke e ke R
This source code has been automatically generated by the
Fuzzy Logic Designer(tm) Version 1.10 design package
Copyright (c) 1993 Byte Dynamics Inc.

14608 E. Olympic Ave. Spokane, Wa. 99216
B T T T T T L T el

kAR AR R AR

*

*
EhRAR AT R AR A er AR bRk ARk Rk bR AR AR Ak A bbbk h ARk kA kb k
kkkkkkhkkk

Include files:
AR ERAIEERRRRRIRR AR R AR AR AR R A AR A AR ek dkkhk Ak k ARk khkh kb hkhhhhdk

o o v e o % o e ok e
*f
#include "train.h"

/*
RERARRAERREEZRAARR AKX AT R AR A A AR AR R AR AR A AR ERE AR A AR R AR R AR Akt od
kkdkkhkkhkk

Module variables:

o oo o v e e e de e e e e ok v 3R v o e v o W v o ok o o ok ok ok i o o o o o e ol o ol o o o o o v e o O O e O o o o o o o o R W O o o e o

KkEKEEREER
i

static int result_ SPEED VERY_ SLOW=0;
static int result SPEED SLOW=0;

static int result SPEED FAST=0;

static int result SPEED VERY FAST=0;
static int result DISTANCE_VERY_ CLOSE=0;
static int result DISTANCE CLOSE=0;
static int result DISTANCE FAR=0;

static int result DISTANCE VERY FAR=0;

static int result BRAKES=0;
static int sum BRAKES=0;

static int rule result[NUM RULES];
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f
i****i**t**********tti*i*t**t**t!i**i******t*****ti**i**********t
Rdkhkhhhin

Function: and( int f£11, int £12)
***************************************************i*************
o e o % de % ok ke ke Rk

*

static int and( f11, £12)

int f£11;

int 'f12;

{

if( £11 <= £12 )
return( f1l1);
elee
return( £12);
}

%*
ERA R AR A ARRARA R R AT R AR IR AR AN ARR AR AR R AR A AR AR AR AR AR AR AR AR R AR
deddkdkhkdkdk
Function: or( int £11, int f£12)
B g t T 22t i st rr e e R L 2 L2 2 L2 L TR 2L 2
khkkhkhhkhhk
*
static int or( £f11, £12)
int £11;
int £12;
{

L[ £1Y > £12-)
return( fl1 )};
else
return( £12);

¥

*
i*it***t******!***********i**************************************
hhkkdkhkkdkkkk
Function: not( int fl1)
Rhhkhhkhhhkhhkhhkh bk hrhkhkdh bk hkhhhkehhhhdhhhhhhhkhhhdddhhdhdidkkr
o Je de g de e ko &k
*
static int not( £fl1l)
int £11;

{

11 = 1 = £11;
return( f1l1);
}

,*
RkkRhkkhhhhhkkkk kb kkd ek dhkkh kR khhkkkkdhkdkddddddthkddbddhdhddhdhhddd
kkhkkhhkhkik
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Function: very( int £f1l1)
Ahkdhkhhkhkddkhkddhhkhhkbdhkhdhddhhrhdkdhdhddhhkhhhdkddhhdkddkhddhdhkdhhhhhd

o g e o o o o o e ok

il 4

static int very( £11)
int £11;

4

T1l =ufl1on £l
return( £11);

}
I*

ddkkkdkkdkdkkkdkkkrkd ko k ko kb dk bk hdkdkdkdddkdkddddkdddhkkhbhhkdhkd
dekkhddkkdkk

Function: not_very( int fl1)
Gk k kAR kAR R TR RN R R AR R R A AR RRR R RN R AN AR AR AR AR ARk R kN Kook

kkkkkhhhhk

=

static int not_very( £l11)
int £11;

{

£11 = (10000 - (£f11 * £11)) / 100;
return( f£11);
}

/*
ke dok ko kkdkdokddkkkkdkkkkddkddbdkhkhkdkdhkdhkkdhddkdkddkkkkkdkkdhddkk
deddd ko ik

Function: eval SPEED_VERY_SLOW( )
AR AA R AR R AT RN TRRREATARRETRR R IR AR RRRRRRRRRNRRARCRERRR R R AR AR AR N,

Wk kkdkkdkk
.

static void eval_ SPEED VERY SLOW( speed)
int speed;

{

if( speed >= 0 && speed <= 0 )
result SPEED VERY SLOW=100;
else if( speed >= 0 .&& speed <= 5 )
result SPEED VERY SLOW=100-(((speed-(0))*200)/10);
else
result SPEED_VERY SLOW=0;

return;

}

,t
ARRAR AR AR AR R AR TR R R AR R R AT AT RR R R AR ARk Ak h ek wk
kkkkhkkdkdkk

Function: eval_ SPEED_SLOW( )
dkkkkkkkdkdkdkkkhkdhhkkdhhhkddhkhkrddkhkdhdkhkdkhhhhdhhdbhkhdhkhhhhhkhddehsd

hhkkhhhhdk
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*/

static void eval SPEED_SLOW( speed)
int speed;

{

if ( speed >= 20 && speed <= 20 )
result_SPEED_SLOW=100;
else if( speed >= 3 && speed <= 20 )
result SPEED_SLOW=( (speed-(3))*58)/10;
else if( speed >= 20 && speed <= 30
result SPEED_SLOW=100-(((speed-(20))*100)/10);
else
result_SPEED SLOW=0;

return;

}
/*

*****ti****************i**********i***************************i**
Fkkhkdkkh ko

Function: eval SPEED FAST( )
************i**************t*********i********i**************i***
o g o o e vk gk ok ok

.

static void eval SPEED FAST( speed)

int speed;

{

if( speed >= 40 && speed <= 45 )
result SPEED FAST=100;
else if( speed >= 20 && speed <= 40 )
result_SPEED_FAST=((speed—(20))*50)/10;
else if( speed >= 45 && speed <= 60 )
result SPEED_FAST=100-(((speed-(45))%66)/10);
else
result SPEED FAST=0;

return;

1
/*

ii********i**t*************t*****ti*******i*************i********
dhkkkddkkkhk

Function: eval SPEED_VERY FAST( )
************i*********************ii*****************************
khkdkhkAkdkhkhd

iy

static void eval SPEED VERY FAST( speed)

int speed;

{

if( speed >= 53 && speed <= 100 )
result_ SPEED_VERY FAST=100;
else if( speed >= 45 && speed <= 53 )
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result SPEED VERY FAST=((speed-(45))*125)/10;
else
result SPEED_VERY_ FAST=0;

return;

}

*
i*ti*********i*********i****t**i*i**i*t***t**********************
hhkhhhhktdhd
Function: eval DISTANCE VERY CLOSE( )
dkkhkhhhthkhkhkhd ko hhdkdkkdhkkhdhhkhkhhkdhbdkhddkdhhdkhddhddkddkddkkkdhdhd
o e o o o ok e % ok
*/
static void eval DISTANCE VERY CLOSE( distance)
int distance;

{

if{ distance >= 0 && distance <= 1 )

result DISTANCE VERY CLOSE=100;
else if( distance >= 1 && distance <= 20

result DISTANCE VERY CLOSE=100-(((distance-(1))#*52)/10);
else

result DISTANCE VERY CLOSE=0;

return;

}

*
i**************t******!**ti***********tt***************i***i*****
hkkkhkhhkdhd
Function: eval DISTANCE CLOSE(
dkdkkkhhhkhhkhhkhhhdhhdhhkhkhdkhhhhdhhhdbhdhhkhhhhhdhhhkhhhhdhddhddhhks
kkkhkkkhkkk
wi
static void eval DISTANCE CLOSE( distance)
int distance;

{

if( distance >= 30 && distance <= 40 )
result DISTANCE CLOSE=100;
else if( distance >= 10 && distance <= 30 )
result DISTANCE CLOSE=((distance-(10))#*50)/10;
else if( distance >= 40 && distance <= 120 )
result DISTANCE CLOSE=100-(((distance-(40))*12)/10);
else
result DISTANCE CLOSE=0;

return;

/*
dehkhkdkkhhkdhkddhdkbhddhdddkdbk kb d bbb hdkkkdhdkddkrdhkdhkhhkhkhhkdddkhhk
o Jr ve o o v o o v o
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Function: eval DISTANCE_FAR(
****!***i*****************i*******************i***********i******

whkkkkhkih

*f

static void eval DISTANCE FAR( distance)
int distance;

{

if( distance >= 100 && distance <= 150 )
result DISTANCE_FAR=100;
else if( distance >= 60 && distance <= 100 )
result_DISTANCE_FAR-({distance-(éO))*25)110;
else if( distance >= 150 && distance <= 350
result DISTANCE FAR=100-(((distance-(150))%5)/10);
else
result DISTANCE FAR=0;

return;
}

/*
***i************************i************************************
e e ok ok o e ok ek

Function: eval DISTANCE VERY FAR( )
********t*i***i*************************i**ﬁ****************i****

*hhkkkhkkk

*

static void eval DISTANCE VERY FAR( distance)
int distance;

{

if( distance >= 400 && distance <= 500 )
result DISTANCE_VERY FAR=100;
else if( distance >= 250 && distance <= 400 )
result DISTANCE VERY_FAR=((distance-(250))%*6)/10;
else
result_ DISTANCE_VERY_ FAR=0;

return;
)2

/i
Rk ARk hk Rk hk ko khkkkhk kR dkdkdhhhokdkddkdkdkdkh bk hkkhdkkhkkkikdk
dhkdkkdhddk

Function: evaluate rules( )
******************i*****************************************i****

Jekdk kiR hhRk
*/

static void evaluate_rules( )

{
int result;




Appendix C / 173

Rule 1

if SPEED is VERY SLOW and
DISTANCE is CLOSE then
BRAKES is LIGHT

result=and( result_ SPEED VERY SLOW, 100);
result=and( result_ DISTANCE CLOSE, result) ;
result BRAKES+=(resu1t*BRARES LIGHT) ;

sum BRAKES+=result;

rule result[0]=result;

Rule 2

if SPEED is VERY SLOW and
DISTANCE is FAR then
BRAKES is LIGHT

. e e e T

result=and( result SPEED VERY SLOW, 100);
result=and( result DISTANCE FAR result) ;
result BRARES+—(resu1t*BRAKES LIGHT),
sum_BRAKES+=result;

rule result[l])=result;

Rule 3

if SPEED is VERY SLOW and
DISTANCE is VERY CLOSE then
BRAKES is LIGHT

et

result=and( result SPEED VERY SLOW, 100);
result=and ( rasult DISTANCE VERY _CLOSE, result);
result BRAKES+—(resu1t*BRAKES LIGHT) ;

sum BRAKES+=result;

rule result[2]=result;

=

Rule 4

if SPEED is VERY_SLOW and
DISTANCE is VERY_FAR then
BRAKES is VERY_LIGHT

—— ——————— R - -

s o e e W

result=and( result_ SPEED VERY SLOW, 100);
result=and ( result DISTANCE VERY FAR result) ;
result BRAKES+-(resu1t*BRAKES VERY LIGHT),

sum BRAKES+-result,

rule_result[3]—resu1t;
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Rule 5

if SPEED is SLOW and
DISTANCE is VERY _CLOSE then
BRAKES is HEAVY

result=and( result SPEED SLOW, 100);

result=and( result | DISTANCE ._VERY_CLOSE, result);
result BRAKES+=(resu1t*BRAKES HEAVY],

sum BRAKES+—result,

rule result[4]=result;

/* e . . e e B e e o e

Rule 6

if SPEED is SLOW and
DISTANCE is CLOSE then
BRAKES is LIGHT

———— o 1 e e e — — - ———

____-———*/

result=and( result SPEED SLOW, 100);
result=and( result DISTANCE CLOSE result) ;
result BRAKES+= (result*BRAKES LIGHT),

sum BRAKES+ =result;

rule _result[5]=result;

Rule 7

if SPEED is SLOW and
DISTANCE is FAR then
BRAKES is VERY LIGHT

result=and( result SPEED_SLOW, 100);
result=and( result DISTANCE FAR, result);
result BRAKES+—(resu1t*BRAKES VERY _LIGHT);
sum BRAKES+—resu1t°

rule result[G]—result,

! A ———— e i e S B e e o e e e

Rule 8

if SPEED is SLOW and
DISTANCE is VERY FAR then
BRAKES is VERY_LIGHT

-

result=and( result SPEED SLOW, 100);
result=and( result DISTANCE _VERY FAR, result);
result BRAKES+={resu1t*BRAKES VERY LIGHT),
sum_BRAKES+=result;
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rule result[7]=result;

Rule 9

if SPEED is FAST and
DISTANCE is VERY CLOSE then
BRAKES is VERY__ HEAVY

B P S — - ——— - ———

result=and( result_ SPEED FAST, 100);
result=and( result DISTANCE _VERY_ CLOSE, result);
result BRAKES+~(result*BRAKES VERY HEAVY],

sum_ BRAKES+=result;

rule . _result[8]=result;

Rule 10

if SPEED is FAST and
DISTANCE is CLOSE then
BRAKES is HEAVY

result=and( result SPEED FAST, 100);
result=and( result | DISTANCE CLOSE result);
result_ BRAKES+=(result*BRAKES HEAVY),

sum BRAKES+=result;

rule result[S]wresult,

Rule 11

if SPEED is FAST and
DISTANCE is FAR then
BRAKES is LIGHT

—— PR—— . s B, s e s s S S S B B S S o o o e S .

———_—--_*/

result=and( result_ SPEED_FAST, 100);
result=and( result DISTANCE FAR, result);
result BRAKES+=(result*BRAKES LIGHT) ;
sum_BRAKES+=result;

rule result[10]=result;

Rule 12
if SPEED is FAST and
DISTANCE is VERY FAR then
BRAKES is LIGHT

result=and( result SPEED FAST, 100);
result=and( result DISTANCE VERY FAR, result);
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result BRAKES+=(result*BRAKES LIGHT);
sum_BRAKES+=result;
rule result[ll]=result;

Rule 13

if SPEED is VERY_FAST and
DISTANCE is VERY_CLOSE then
BRAKES is VERY HEAVY

- - e - -

result=and( result_ SPEED_VERY FAST, 100);
result=and( result | DISTANCE VERY CLOSE, result);
result BRAKES+=(resu1t*BRAKES VERY HEAVY),
sum_BRAKES+=result;

rule_result[12]=result;

/* e

Rule 14

if SPEED is VERY_ FAST and
DISTANCE is CLOSE then
BRAKES is VERY HEAVY

- - - ——— —_—

result=and( result SPEED_VERY_ FAST, 100);
result=and ( result DISTANCE CLOSE, result);
result BRAKES+—(result*BRAKES VERY_HEAVY) ;
sum BRAKES+=result;

rule result[13]=result;

/* ——————— — e o e e e e e e G B . e i S e o e o e e o e o

Rule 15

if SPEED is VERY_FAST and
DISTANCE is FAR then
BRAKES is HEAVY

result=and( result SPEED VERY_ FAST, 100);
result=and( result DISTANCE FAR, result);
result BRAKES+-(rasu1t*BRAKES HEAVY) ;

sum BRAKES+-resu1t,

rule result[14]=result;

[ e = s ——

-

Rule 16

if SPEED is VERY_ FAST and
DISTANCE is VERY FAR then
BRAKES is LIGHT
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result=and( result SPEED VERY FAST, 100);
result=and( result DISTANCE VERY _FAR, result);
result BRAKES+=(resu1t*BRAKES LIGHT) ;

sum BRAKES+=result;

rule_result[15]=result;

return;

}
/*

dhkkhkhkkhhkkkkhhkhdkk ek hdkkkhkkkk kb hhhkhhkhhkhhhhkhhhdhkhkdddddkd
kkhkhhhbhk

Function: initialize outputs(
******************************i!**********i***ii************i****

dkdkhhAhhh

L

static void initialize_outputs( )
{

result BRAKES=0;
sum_BRAKES=0;

return;

}

,*
AkkEhkR kA Rk kA k ke hkdkhkkkkdhkkh ke hdhkrkddkkdhdkhkdkhhrrhhhbhdhkid
% % Je e e ek e e

Function: determine outputs({ )
***********ii**************!i**t***********!**************i*i****

oo ik g g de g % ek ok

/i

static void determine outputs( )
{

if( sum BRARES > 0 )

result BRAKES = result_BRAKES / sum_ BRAKES;
else

result BRAKES =

return;
}

*
iﬁ*i*t***t*t***tt**********t****tt***i*************************ti
kkkkhkkkhkR

Function: fld_fuzzy inputs( )
**t********i**************************************ii*****ii**ti**
dkkkkhkhkk

*

int £1ld_fuzzy inputs( speed, distance)

int speed;

int distance;

{
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int err=0;

if( speed < MIN_SPEED )
speed = MIN_SPEED;

else if( speed > MAX_SPEED )
speed = MAX SPEED;

if( distance < MIN DISTANCE )
distance = MIN_DISTANCE;

else if( distance > MAX DISTANCE )
distance = MAX DISTANCE;

eval SPEED VERY_ SLOW( speed);

eval SPEED SLOW( speed);

eval SPEED_FAST( speed);

eval SPEED VERY FAST( speed);

eval DISTANCE_VERY_CLOSE( distance);
eval DISTANCE CLOSE( distance);

eval DISTANCE FAR( distance);

eval DISTANCE VERY FAR( distance);

initjialize outputs( );
evaluate rules( );
determine outputs( );

return( err);

/*
drkkkdkkhkkkkdhhkdkdkkdkhdhhkkkhkkhkdkhdrkth ok kkkdddkdkdthhkkhbkththhhkdhkkhhhkkd
dhhkhhkhkhd ok

Function: £1d fuzzy outputs( )
R R e T T P L L

o % % e ok Je ok ok ok ok

*)

int fld_fuzzy outputs( brakes)
int *brakes;

int err=0;
*brakes=(int)result BRAKES;

return( err);
¥
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/*
***t*****!******************i************i*****i****************i
hhkkkhhhhik

Module: train.h
***********************i*************i*************i*******i*****

T T T 1
*/

L
i****i*l*i**********t******************************i*******i*i***
khkhkkkdhh
This source code has been automatically generated by the

Fuzzy Logic Designer(tm) Version 1.10 design package
Copyright (c) 1993 Byte Dynamics Inc.
14608 E. Olympic Ave. Spokane, Wa. 99216
t*t*t*******t***************i****i***************tt*i************
khkkkhkhkd

%/

#define NUM_INPUTS 2
#define NUM_OUTPUTS 1
#define NUM_RULES 16

#define MIN_SPEED 0
#define MAX_SPEED 100
#define MIN DISTANCE O
#define MAX DISTANCE 500

#define MIN BRAKES 0

#define MAX_BRAKES 100
#define BRAKES VERY LIGHT 5
#define BRAKES_LIGHT 30
#define BRAKES HEAVY 70
#define BRAKES_VERY HEAVY 99
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Examples of Consumer
Products That Use Fuzzy
Logic

Air conditioner Hitachi
Matsushita
Mitsubishi
Sharp
Anti-lock brakes Nissan
Clothes dryer Sanyo
Matsushita
Copy machine Canon
Dish washer Matsushita
Electric fan Sanyo
Kerosene fan heater Matsushita
Mitsubishi
Toshiba
Fujitsu
Corona
Toyotomi
Sanyo
Sharp
Microwave oven Hitachi
Matsushita
Sanyo
Toshiba
Sony
Refrigerator Sharp
Rice cooker Matsushita
Sanyo
Hitachi
Sharp
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Still camera

Television

Toaster
Vacuum cleaner

Video camcorder
Washing machine

Examples of Consumer Products That Use Fuzzy Logic / 181

Canon
Minolta
Goldstar
Hitachi
Samsung
Sony
Sony
Hitachi
Matsushita
Toshiba
Panasonic
Goldstar
Hitachi
Matsushita
Samsung
Sanyo
Sharp
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Points to Ponder ‘

10.

182

. Next to the podium, the logic professor places two glasses: one is full of water, in case

he gets thirsty; the other is empty, in case he does not get thirsty.

Unknown
All traditional logic habitually assumes that precise symbols are being employed.
It is therefore not applicable to this terrestrial life. . .

Bertrand Russell
So far as the laws of mathematics refer to reality, they are not certain. And so far as
they are certain, they do not refer to reality.

Albert Einstein
Every system is its own best analogue.

Andrew D. Booth

. The Yellow Emperor said . . . “if we want to return again to the roots, I'm afraid we’ll

have a hard time of it!”

Chuang Tzu
We have to think that if we know one, we know two because one and one are two.
We are finding that we must learn a great deal about and.

Freeman Dvson

. There is nothing more practical than a good theory.

Leonid I. Brezhney
The Japanese government had decided that the electronics industry was too important
to be left only to businessmen.
Clyde Prestowitz
I cannot think of any problem that could not be solved better by ordinary logic.
William Kahan
Anything that can be done with fuzzy logic . . . can better be done with probability.
Dennis Lindley
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Fuzzification is a kind of scientific permissiveness . . . I cannot conceive of fuzzification
as a viable alternative to scientific method.
Rudolf E. Kalman
Fuzzy logic is the cocaine of science.
William Kahan
Fuzziness is probability in disguise
Myron Trbus
Some day the enormous amount of effort the Japanese have put into fuzzy logic will
earn Lotfi a medal that will be awarded by the president of the United States. God
knows we have to do something to slow these guys down.
William Kahan
In questions of science the authority of a thousand is not worth the humble reasoning
of a single individual.
Galileo Galilei
Do not confuse the moon with the finger that points at it.
Zen Proverb
What we observe is not nature itself, but nature exposed to our method of questioning.
Werner Heisenberg
If fuzziness exists, the physical consequences are universal, and the sociological con-
sequence is startling: scientists, especially physicists, have overlooked an entire mode
of reality.
Bart Kosko
In my opinion, a mathematician, in so far as he is a mathematician, need not pre-
occupy himself with philosophy.
Henri L. Lebesgue
I learned many years ago never to waste time trying to convince my colleagues.
Albert Einstein
We shall have to learn to refrain from doing things merely because we know how to
do them.
Theodore Fox
I knew that just by choosing the label fuzzy I was going to find myself in the midst of
a controversy.
Lotfi Zadeh
We had a funny discussion over the term fuzzy. The company is highly respected and
asked us to find another name.
Jens-Jorgen (Dstergaard
We fuzzy control theorists have brought control theory from seventh heaven to the
ground.
Michio Sugeno
In a matter of two to five years, you'll find most expert systems will use fuzzy logic.
Lotfi Zadeh
Fuzzy logic is saving us thousands if not hundreds of thousands of dollars on a
yearly basis.
Peter Holmblad
What is now proved was once only imagined.
William Blake
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A
Absolute complement, 31-32
Activation functions, 110, 111
Adaption, 102, 106, see also Learning
Adaptive fuzzy controllers, 96
Adaptive fuzzy systems, 157
Adaptive resonance, 108
Adaptive resonance theory (ART) networks,
127-129, 142-143,157

Adaptive systems, 157
AL220, 89, 165
Algebraic product, 35-37
Algebraic sum, 37
Algorithm, 157
a-Level sets, 30
Analog computation, 129
AND gate, 22
AND operation, 51, 61

circuit model, 20-21

fuzzy, see Fuzzy AND
AND-OR defuzzification, 83
Antecedent, 157
Antireflexive relations, 46
Antisymmetric relations

crisp sets, 15

fuzzy sets, 46

Arc welding robot, fuzzy control application,
92
Array, for representing relations, 17
Arrow diagrams
for fuzzy relations, 43, 44
for representing relations, 18
ARTI, 127-129, 142
ART2, 127
ARTS3, 127
Artificial neural networks, see Electronic
neural networks
ARTMAP
electronic neural networks, 127
fuzzy neural networks, 143
ART networks, 157
electronic neural networks, 127-129
fuzzy neural networks, 142143
Assilian, Seto, 3
Associative law, 10
Associative memory, 139, 157
Astrocytes, 103
Attractor networks, 157
Automobile, neuro-fuzzy control of,
150-152
Axon, 103, 104

185
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B
Back-propagation learning, 108, 157
multilayer perceptrons and, 114—121
BAM, 157
Basins of attraction, 158
BBS’s, 3
Bidirectional associative memory (BAM), 157
Binary digits, 73
Binary gates, 22
Binary logic JK flip-flop, 65-67
Binary operations, 20, 21, see also AND
operation; Inverter operation; OR operation
Binary relations, 14, 15-20
Binary weights, 73-74
Biological neural networks, 102, 103-106
Black, Max, 5
Boilers, fuzzy control application, 90-91
Boltzmann machine networks, 125, 158
Boolean algebra, 20-23
and fuzzy algebra, 58
truth values, 57, 58
Boolean functions, 22-23
circuits for implementing, 61
Bounded difference, 38-39
Bounded-difference circuits, 70, 71
for fuzzy AND implementation, 72
for fuzzy OR implementation, 73
Bounded sum, 38

C
Car, neuro-fuzzy control of, 150-152
Cardinality

crisp sets, 8-9

fuzzy sets, 30-31
Cartesian axes, for representing relations, 17
Cartesian multiplication, 14, 34-35
Cell body, neurons, 103, 104
Cell membranes, neurons, 103, 103, 106
Cement kilns, fuzzy control application, 89-90
Center of gravity defuzzification, 83, 86
C5000-FZ001, 165
Classes, of fuzzy functions, 59
Closed-loop feedback systems, 77
Codomain, relations, 15
Commutative law, 10
comp.ai.fuzzy Internet news group, 3
Comparators, 62, 64, 65, 158
Compensatory operators, 158

Competitive learning, 158
in electronic neural networks, 125-129
in fuzzy neural networks, 140-141
Complement
crisp sets, 11-13
fuzzy sets, 31-32
Complement coding, 142-143
Complement gate, 22
Complement operation, see Fuzzy Inverter;
Inverter operation
Composition
crisp set relations, 19-20
fuzzy set relations, 4445
Computers, difficulty with vague “human”
concepts, 1-2
Concentration operation, 35, 36-37
Consequent, 158
Continuous fuzzy variables, 81
Contrast intensification, 36-37
Control, 76
Control action signal, 77
Control systems (conventional), 77-80, see
also Fuzzy control systems
Convex combination, 40
Convex fuzzy sets, 30
Counter back-propagation learning, 108
Counters, 73
Crisp control action (defuzzification), 81, 82,
83, 86, 158
Crisp sets, 158, see also Sets (classical theory)
Crossover point, 30, 51
CubiCalc, 163
Current-mode fuzzy logic circuits, 69-73

D
Defuzzification, 81, 82, 83, 86, 158
Degree of membership, 158
De Morgan’s laws, 33, 60
Dendrites, 103, 104, 105
Describing sets, 7-9
Digital control systems, 78-79
PID, 79-80
Dilation operation, 35, 36
and fuzzification, 40, 41
Direct digital control (DDC), 78-79
Discrete fuzzy variables, 81
Discriminator circuit, 62, 64—65
Domain, relations, 15



Drive reinforcement learning, 108
Driving, 76

Dynamic RAM, 130

Dynamic systems, stability, 93-94

E
E5AF, 165
EEROM, 130
Electron, 50
Electronic neural networks, 102-103, 109,
131-133, see also ART networks;
Boltzmann machine networks; Fuzzy
neural networks; Hopfield networks;
Kohonen self-organizing networks
applications, 132-133
competitive learning in, 125-129
“mimic the biological system” as misnomer,
103
perceptron neuron model, 109-121
recurrent, 121-125
training set, 107
VLSI implementation, 129-131
Electronics, 50
Elements, of a set, 7
Empty set
crisp sets, 9, 11
fuzzy sets, 31
Energy, of a fuzzy relation, 93
EPROM, 130
Equal sets, 31
Error back-propagation, 117
Error signal, control systems, 77
Excluded middle law, 158
Exclusive OR function, 25, 113, 118-121

F

Fault tolerance, 102, 129

FB-30 AT, 165

FC110, 165

FCAFL, 165

FCD10xxx, 165

Feedback networks, 109
Feedforward networks, 109
Flip-flops, 65-69, 73, 158
Floating membership function, 159
Floating polysilicon gate technology, 130
FP-1000/3000, 165

FP-5000, 165
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FTP repositories, 3
Functions, 15, see also Relations
Furry numbers, 73-74
Fuses, for fuzzy operators, 33, 34
FuzGen, 162
FuziCale, 163
Fuzzification, 40-42, 159
Fuzzification functions, 149
Fuzzy algebra, 58
Fuzzy AND, 29, 33, 34
logic circuits, 62, 63, 71-72
truth table, 58-59
Fuzzy ART, 142-143
Fuzzy associative memory, 139, 158
Fuzzy binary numbers (furry numbers), 73-74
Fuzzy cars, 150-152
Fuzzy chips, 3
Fuzzy competitive learning, 140-141
Fuzzy complement, see Fuzzy inverter
Fuzzy conditional statements, 82
Fuzzy control, 77, 80, 96, 158
PID control using, 86—89
Fuzzy controllers, 3, 96
adaptive, 96
commercial, 165
fuzzy neural network application, 150-152
need for rigorous theory for design, 92-93
performance vs. conventional controllers, 77
self-organizing, 96
Fuzzy control systems, 80-86, 96
design, 83-86
fuzzy neural network applications, 149-152 .
industrial applications, 89-92, 152-153
stability, 3, 92-96
Fuzzy counters, 73
Fuzzy Decision Maker, 164
Fuzzy dynamic systems, stability, 93-94
Fuzzy entropy, 159
FuzzyFan, 163
Fuzzy flip-flop, 68—69, 73, 158
Fuzzy functions, 59-61
Fuzzy Hamming distance, 47
Fuzzy implication rules, 150
Fuzzy inverter, 33-34
logic circuits, 61, 62, 71, 72
truth table, 58-59
Fuzzy Knowledge Builder, 164
Fuzzy learning, 108
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Fuzzy logic, 57-58, 158
consumer applications, 3, 180-181
controversy surrounding, 2
development of, 1-4
multivalued nature of, 58
neural network applications, see Fuzzy
neural networks
points to ponder, 182-183
truth tables for, 58—-59
Fuzzy logic circuits, 61-65, see also Fuzzy
AND; Fuzzy inverter; Fuzzy OR
building units for, 69-70
current mode, 69-73
voltage-mode, 69
Fuzzy logic control, see Fuzzy control
Fuzzy logic controllers, see Fuzzy controllers
Fuzzy Logic Designer, 86
simulation using, 86, 87-88
Fuzzy Logic Development Kit, 164
Fuzzy logic hardware, 165
Fuzzy logic JK flip-flop, 68-69, 158
and fuzzy numbers, 73
Fuzzy logic software, 162—164
Fuzzy Logic (software), 163
Fuzzy matrix, 42
Fuzzy min-max learning, 144-146
Fuzzy min-max neural networks, 143-146
Fuzzy modifier, 159
Fuzzy neural networks, 102, 139-140, see also
Electronic neural networks
applications, 3, 4
competitive learning, 140-143
min-max networks, 143—146
multilayer perceptrons for, 140
Fuzzy neurons, 146-149
Fuzzy NOT, 29, 159
Fuzzy operators, 158
Fuzzy OR, 29, 33, 34
logic circuits, 61-62, 63, 72-73
truth table, 58-59
Fuzzy registers, 73
Fuzzy relations
basic concepts, 42—44
composition of, 4445
energy of, and stability, 93-94
types, 46
Fuzzy sets, 2, 158
algebraic product, 35-37
algebraic sum, 37

basic concepts, 26-31
bounded difference, 38-39
bounded sum, 38
cartesian multiplication, 34-35
complements of, 31-32
convex combination, 40
geometrical model, 47-50
intersection of, 32-33
philosophical implications, 50-51
problems with, 50-51
relations, see Fuzzy relations
union of, 32
Fuzzy singleton, see Singleton sets
Fuzzy subsets, 27
Fuzzy Tech development tool, 152
Fuzzy Thought Amplifier, 164
Fuzzy variables, 58
in fuzzy control, 81, 83

G
GA FuzzyWare, 162
Gaussian membership functions, 160
Genetic algorithm, 159
Geometrical model, of fuzzy sets, 47-50
Glial cells, 103-104
Grade fuzzification, 41
Gradient descent system, 159
Graphs
for defining fuzzy set membership function,
26,29
for fuzzy relations, 43
Grossberg learning, 107
Groups, in fuzzy functions, 60

H

Hamming distance, 47

Hardware, fuzzy logic, 165

Heat exchangers, fuzzy control application, 90

Hebbian learning, 107

Hedges, 159

Heisenberg’s uncertainty principle, 3, 161

Hidden layers, multilayer perceptrons, 114

Hisdal, E., 51, 96

Hopfield networks, 122-124, 159

VLSI implementation, 131

Human thought, capturing vague aspects via
fuzzy sets, 1-2, 51, 102

Hyperboxes, min-max fuzzy neural networks,
143144, 145, 146, 159




I
Identity relations, 46
Imaginary numbers, 27
Incineration plant, fuzzy control application,
91-92, 152

Input signal, control systems, 77
“Instinct” response, 96
Integrated injection logic (I’L) circuits, 69
Intensification operation, 36-37
Internet, fuzzy resources on, 3
Intersection

crisp sets, 9-10

fuzzy sets, 32-33
Inverses of relations, 16-18
Inverted pendulum problem, 97, 159
Inverter gate, 22
Inverter operation, 61

circuit model, 21

fuzzy, see Fuzzy inverter
Involuntary relations, 19
Ton gradients, in neurons, 105

J

JK flip-flop, 65, 158
binary logic, 65-67
fuzzy logic, 68-69, 73

K

Kalman filter, 159

Kernel of fuzzification, 40

Kohonen self-organizing networks, 159
electronic neural networks, 125-126
fuzzy neural networks, 141

Kohonen’s learning, 107

Kosko, B., 47

L

Large, graphical representation, 82
Large negative linguistic variable, 54
Large positive linguistic variable, 54

Learn-according-to-how-well-it-wins rule, 141

Learning, 102, 106-108
competitive, see Competitive learning
fuzzy, 108
models of, 107-108
modes of, 107
Learning law, 159
o-Level sets, 30
LFZY1, 165
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Linguistic statements/variables, 54. 160
and control stability, 93
in fuzzy control, 80-81, 83
Logic circuits, 160, see also Fuzzy logic
circuits
Logic symbols, for operations, 21, 22

M
Mamdani, Ebrahim, 3
Mapping, 160
Mathematica, Fuzzy Logic Pack, 164
MatLab, Fuzzy Logic Toolbox, 164
Matrix

fuzzy, 42

for representing relations, 17

transpose, 19
Max-av composition, 45
Maximum fuzzy neuron, 148
Max-min composition, 4445
Max-min transitive relations, 46
Max-product composition, 45
McCulloch-Pitts model, 109
Medium, graphical representation, 82
Medium positive linguistic variable, 54
Members, of a set, 7

degree of membership, 158
Membership functions, 160

crisp sets, 8

in fuzzy control, 81, 83, 84, 87

fuzzy sets, 26-27, 28

as heart of fuzzy theory, 51, 52
min-max fuzzy neural networks learning,
144

Minimum fuzzy neuron, 148
Min-max composition, 45
Min-max defuzzification, 83
Min-max fuzzy neural networks, 143-146
Multicollector transistors, 69-70, 71
Multilayer perceptrons, 114-121

for fuzzy neural networks, 140
Myelin sheath, 103—104

N

Neo-Hebbian learning, 107

NET Talk, 132

NeuFuz4-C, 163

Neural networks
artificial, see Electronic neural networks
biological, 102, 103-106
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fuzzy, see Fuzzy neural networks
quantum, 133
Neuro-fuzzy controllers, 150-152
Neuroglia, 103
Neurons, 103-106, 160
fuzzy model of, 146-149
modification in learning, 106-108
perceptron model of, 109-121
VLSI model, 130-131
Neurotransmitters, 104
NLX(various) fuzzy logic hardware, 165
Node of Ranvier, 104
Non-Zadeh operators, 158
NOT operation, 31
fuzzy representation, 29, 159
Nucleus, neurons, 103, 104

(0]
OFF, 20
O’'INCA, Design Framework for Windows,
163
Oligodendrocytes, 103
ON, 20
Operational amplifiers
for discriminator implementation, 62, 64
for fuzzy inverter implementation, 61, 62
Operations, on sets, 9-14
OR operation, 51, 61, 112-114
circuit model, 21
fuzzy, see Fuzzy OR
QOutput, control systems, 77

P
Paradox, 160
Pattern recognition, 102
fuzzy neurons for, 148-149
by Hopfield networks, 122-124
PD control, fuzzy application, 89
Perceptrons, 109-121, 160
multilayer, 114-121 :
for fuzzy neural networks, 140
pictorial behavior representation, 111-114
Perfect training, 108
Phonetic typewriters, 132—133
PI control, 80
fuzzy application, 89
PID control, 79-80, 160

fuzzy application, 86-89
Point fuzzification, 40
Polarization, of neuron membranes, 105
Possibility, 51
Power set, 9
Precision rectifiers, for fuzzy OR implementa-
tion, 62, 63
Predictive ART, 143
Pre-order relations, 46
Probability, 2
vs. possibility, 51
Proportional-integral-derivative control, see
PID control
Pythagorean theorem, 160

Q

Quantum neural networks, 133
Quantum physics, 3

R
Randomness, 1, 2
Recurrent electronic neural networks, 121-125
Reference signal, control systems, 77
Reflexive relations

crisp sets, 15

fuzzy sets, 46
Refuse incineration plant, fuzzy control

application, 91-92, 152

Registers, 73
Relations, 14, 15-20

composition of, 19-20

fuzzy, see Fuzzy relations

inverses of, 16—18

representation, 16-18

types of, 15
Relative cardinality, 31
Relative complement, 31-32
Resemblance relations, 46
Rest potential, neurons, 105
Rule base, 81, 82, 83, 85-86, 87
Russell’s paradox, 160

S
Schwann cells, 103
Self-inverse relations, 19




Self-organization, 106
Self-organizing fuzzy controllers, 96
Self-organizing networks, Kohonen, 125-126
Setpoint, 77
Sets (classical theory), 158, see also Fuzzy sets
algebra summary, 13
Boolean algebra, 20-23
cartesian products of, 14
complement of, 11-13
defined, 7
describing, 7-9
fuzzy sets contrasted, 2
intersection of, 9-10
relations, see Relations
union of, 10-11
Short-term memory, ART networks, 127
Signoid activation functions, 111
Similarity relations, 46
Simulated annealing, 108, 160
Single hidden-layer algorithm, 121
Single-to-multifan-out conversion, 70, 71
Singleton sets, 30, 160
in fuzzy control, 83, 87
Small, graphical representation, 82
Small positive linguistic variable, 54
Smart materials, 96
Software, fuzzy logic, 162-164
Speech recognition, 141
Stability analysis, fuzzy control systems, 3,
92-96
Stability-plasticity problem, 161
Steady state response, control systems, 78
Steam engines, fuzzy control application,
90-91
Stochastic learning, 108
Strong o-level set, 30
Succedent, 158
Sugeno operator, 161
Supervised learning, 107
Supervised networks, 109
Support, of fuzzy sets, 30
Support fuzzification, 41
Symmetric relations
crisp sets, 15, 19
fuzzy sets, 46
Synapses, 104
Synaptic cleft, 104
Synaptic terminals, 103, 104
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T
Tank level, neuro-fuzzy control of, 152-153
Terminal buttons, 103, 104
T/FC150, 165
Thought process (human), capturing vague
aspects via fuzzy sets, 1-2, 51, 102
Tiling algorithm, 121
TIL Shell, 164
Time delay, as major cause of fuzzy control
instability, 92

Togai Demo, 162
Training set, 107
Transient response, control systems, 78
Transistors, for fuzzy logic circuits, 69-70, 71
Transistor-transistor logic (TTL) circuits, 69
Transitive relations

crisp sets, 15

fuzzy sets, 46
Transpose of matrix, 19
Trapezoidal membership functions, 160
Traveling salesman problem, 161
Triangular membership functions, 160
Truth tables, 58-59, 161

binary JK flip-flip, 66
Truth value, 57
Two-collector transistors, 69-70

U
Uncertainty, fuzzy logic view of, 1, 2-3
Uncertainty principle, Heisenberg’s, 3, 161
Union

crisp sets, 10-11

fuzzy sets, 32
Universal set

crisp sets, 9, 11

fuzzy sets, 31
Universe relations, 46
Unsupervised learning, 107
Unsupervised networks, 109
Upstart algotithm, 121

v

Vagueness, as distinct from randomness, 1-2, 5

Venn diagrams, 11, 12, 13

Very large scale integration (VLSI), 69
electronic neural networks for, 129-131
limitations to, 130

Voltage-mode fuzzy logic circuits, 69
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W

Water purification, fuzzy control application, 91
Welding robot, fuzzy control application, 92
Winner-take-all networks, 140

Wired subtraction, 70

Wired summation, 73

X
XOR function, 25, 113, 118-121

Y
Yager operators, 161

Z
Zadeh, Lotfi, 1, 28
Zero relations, 46



